9月9日,阿里巴巴达摩院青橙奖第三届获奖名单正式揭晓,共10位青年科学家获此殊荣,黄冈中学毕业生杨诗武名列其中。每人除100万人民币奖金外,还将获得阿里全方位的科研资源支持。
杨诗武于2001年进入黄冈中学理科实验班,曾获全国高中数学联合竞赛一等奖,中国数学奥林匹克一等奖,入选45届 IMO 国家代表队,并获国际奥林匹克数学竞赛金牌,保送北京大学数学系学习。2008年,在北大本科毕业后赴美国普林斯顿大学数学系深造。博士后阶段就读于剑桥大学。2016 年加入北京大学国际数学中心任助理教授。
据悉,本届青橙奖总共收到了317人的有效申报材料。经过初审、复审以及终审答辩三轮评审流程,最终评选产生10位获奖人,其中,最年轻者仅有28岁,平均年龄32岁。青橙奖设立于2018年,是阿里达摩院举办的一项公益性的青年人才评选活动,每年选拔10名中国籍的青年科学家,旨在发掘和支持从事人工智能、芯片、智能制造等基础科学和应用技术研究领域的优秀青年工作者。
「你们处在最好的时候,要记得把握机遇。」——颁奖嘉宾钟南山院士。
在20进10的最终答辩环节之后,达摩院院长张建锋正式公布了本届达摩院青橙奖学者名单,分别为:
梁文华国家呼吸研究所
杨诗武 北京大学
赵保丹 浙江大学
聂礼强山东大学
姜宇清华大学
冷静文上海交通大学
何向南中国科学技术大学
杜子东 中国科学院计算技术研究所
邓岳北京航空航天大学
黄高清华大学
特别值得注意的是,今年的颁奖嘉宾是钟南山院士。在为青橙奖颁奖的前一天,84 岁的钟南山院士刚刚因抗击新冠肺炎疫情斗争中的杰出贡献被授予「共和国勋章」。在 9 月 9 日线上颁奖典礼现场,钟南山以 VCR 寄语的方式表达了他对青年科学家的期待:
「我35岁以前还在农村做锅炉工,完全没有机会搞科研。当代青年学者思想的活跃、知识的多元令我印象深刻。你们处在一个最好的机遇时代,要记得把握机遇,年轻人既要有热情,更要有激情。你们要做出一个典范,让研究产生社会效益和经济效益。」钟南山院士说道。
青橙奖设立于 2018 年,是阿里达摩院举办的一项公益性的青年人才评选活动,每年选拔 10 名中国籍的青年科学家,旨在发掘和支持从事人工智能、芯片、智能制造等基础科学和应用技术研究领域的优秀青年工作者。
据统计,本届青橙奖总共收到了 317 人的有效申报材料,陆续有 23 位院士、两名图灵奖得主、29 位 IEEE 和 ACM Fellow 通过撰写推荐信向达摩院推荐人选。经过初审、复审以及终审答辩三轮评审流程,最终评选产生 10 位获奖人,获奖的比例为 3.15%。
「不唯资历、不唯履历、不唯论文、不唯门第」,寻找并支持国内最有潜力的青年科学家,这是阿里巴巴达摩院设立青橙奖的初衷。
十位「硬核」获奖者
第三届青橙奖的获得者和此前几届在研究领域上有哪些不同?阿里巴巴达摩院院长张建锋表示:「今年的青橙学者很多来自交叉学科和基础学科领域。交叉学科的研究价值正在变得越来越重要,另外只有更多科学家进入基础学科领域,才能帮助科学技术发展。达摩院的青橙奖是不求回报的。」
今年的十名获奖者,其身处的科研领域腹地广阔,既有芯片、工控软件、人工智能、材料器件等应用科学,也有基础数学,还有医学大数据等交叉学科。
让我们看看这 10 名获奖学者:
梁文华
获奖理由:治病救人以外,他运用大数据分析,解决肺癌和新冠难题。
梁文华的研究方向是肺癌的临床与基础转化研究。在学术方面,他建立了国际认可的肺癌早诊和优化治疗策略,并揭示了新冠的临床特征并建立重症预测模型。
梁文华自 2012 年进入肿瘤研究领域,至今已发表第一 / 通讯作者 SCI 论文 80 余篇,20 分以上 6 篇,累计影响因子超过 300 分,被引 700 余次。最近,梁文华等人开发了肺癌 CT 图像的 AI 早期筛查工具,大幅度提高了门诊的工作效率。
今年 2 月,钟南山、梁文华等三十余位作者合著的论文《Clinical characteristics of 2019 novel coronavirus infection in China》在国际顶级医学期刊《新英格兰医学杂志》,这是钟南山研究团队首份有关新型冠状病毒的研究,引起了社会广泛关注,为疫情防控提供了珍贵的临床回顾性研究参考。
杨诗武
获奖理由:他发展了研究波方程的向量场方法,部分解决了带电粒子渐近衰减这个古老的猜想。
杨诗武,2001 年进入黄冈中学理科实验班, 2004 年毕业。曾获全国高中数学联合竞赛一等奖,中国数学奥林匹克一等奖,入选 45 届 IMO 国家代表队,并获国际奥林匹克数学竞赛金牌,保送北京大学数学系学习。2008 年在北大本科毕业后赴美国普林斯顿大学数学系深造,师从 Igor Rodnianski。博士后阶段就读于剑桥大学,合作导师是 Mihalis Dafermos。2016 年加入北京大学国际数学中心任助理教授。
杨诗武主要研究方向是双曲偏微分方程、广义相对论,最近的研究目标是在数学方面证明著名的杨 - 米尔斯方程。
同时,他也正在以数学家的身份研究宇宙和黑洞。杨诗武表示,数学家和天文学家和物理学家看待黑洞的方式不同,数学家是用几何的语言来描述时空和黑洞的。
赵保丹
获奖理由:她探索了钙钛矿材料中的能量损耗机理,实现了更加高效环保的新型光电器件。
赵保丹今年 29 岁,曾入选 2019 年《麻省理工科技评论》中国区「35 岁以下科技创新 35 人」。2019 年任浙江大学光电学院百人计划研究员,也是剑桥大学卡文迪许实验室访问研究员。她于 2019 年在英国剑桥大学获得物理学博士学位,师从有机光电物理学权威卡文迪许物理学教授 Richard Friend 院士 。
赵保丹以制备简单、成本低廉的新方法突破了钙钛矿 LED 效率的世界纪录;还利用锡代替铅的手段降低了钙钛矿太阳能电池的毒性。近 5 年来共发表 SCI 期刊论文 20 篇,包括 Nature Photonics , Nature Communications, Joule, Advanced Materials, Nano Letters, ACS Energy Letters。
聂礼强
获奖理由:赋予对话机器人对多模态场景感知、理解与推理的能力,从而让人机交互更自然。
聂礼强现任山东大学计算机科学与技术学院教授、iLearn 实验室成员、山东省人工智能研究院院长。他分别在西安交通大学获得本科学位,在新加坡国立大学完成博士和博士后学业。2016 年入选「齐鲁青年学者」计划和国家海外高层次人才。
聂礼强的研究方向为机器学习的多模态融合、推理、检索方面。他曾经是山东省年级最轻的教授,有趣的是,现在他已不是这一记录的保持者,而新的记录保持者是他的博士学生。
受到导师 Tat-Seng Chua 跑步爱好的影响,聂礼强将「跑完半程马拉松」、拿到驾照作为加入自己博士生的毕业要求,他表示:「因为做学者最重要的不是聪明,而是毅力。」
姜宇
获奖理由:他通过模型驱动的开发与测试技术,推进了工业控制系统的软件设计与漏洞分析平台的自主可控和效率提升。
姜宇 2010 年在北京邮电大学获得软件工程学士学位,2015 年获得清华大学计算机科学与技术博士学位。目前姜宇的研究主要围绕工业控制软件,在功能安全性保障和信息安全性保障两个方向均作了探索,并取得了多个研究成果。在功能安全性保障方面,研发了 Tsmart-MDD——基于异构形式计算模型的工业控制软件建模、验证与综合工具集;在信息安全性保障方面,研发了工业控制软件安全性分析工具 Tsmart-DATE。
姜宇的博士论文《面向异构嵌入式系统的形式计算模型研究》提出了严格的异构嵌入式系统形式计算模型, 并开发了有效的模型分析、综合工具集,解决了软件与硬件异构,同步与异步异构嵌入式系统的分析验证难等问题。相关技术和研究成果发表在在软件工程方法和嵌入式系统领域的顶级期刊会议 TPDS、TC、TIE 和 FSE 上。
冷静文
获奖理由:他通过深度学习模型算法与系统结构的联合优化,让智能异构计算系统更高效、更可靠。
冷静文现任上海交通大学计算机系长聘教轨副教授,研究方向是面向人工智能的系统结构设计与优化。他目前主要研究专用处理器与通用处理器组成的异构系统,从宏观系统层面解决深度学习模型的可靠性、鲁棒性问题,致力于从底层突破算力瓶颈。他是使用最广泛的开源 GPU 功耗模型之一 GPUWattch 的作者之一。
何向南
获奖理由:他聚焦个性化推荐,为信息过载精准施策。
何向南 2011 年在华东师范大学获得软件工程学士学位,2016 年在新加坡国立大学获得计算机科学博士学位,研究方向为大数据分析与挖掘,具体包括推荐系统、信息检索、数据挖掘、机器学习、多媒体内容分析等。迄今已发表 CCF A 类论文 70 余篇,包括国际顶级会议 SIGIR、 WWW、KDD、MM,和 ACM/IEEE 顶级期刊 TKDE、TOIS 等,谷歌学术引用次数超过 6400 次。
此外,何向南曾获信息检索顶级会议 ACM SIGIR 2016 最佳论文提名奖和 WWW 2018 最佳论文提名奖,还长期担任 SIGIR、WWW、KDD、MM 等国际顶级会议的程序委员会委员以及 TKDE、TOIS、TMM 等国际期刊审稿人。
杜子东
获奖理由:他的架构深度学习处理器,能高效处理广泛深度学习算法。
杜子东 2011 年获得清华大学电子工程系学士学位,2016 年在中科院计算所获得博士学位,现任中科院计算所智能处理器研究中心副教授,研究方向是人工智能体系结构。
杜子东的研究兴趣主要集中在人工智能的新型架构,包括深度学习处理器,不精确 / 近似计算,神经网络架构,神经形态架构。他发表了 20 多篇顶级计算机体系结构研究论文,包括 ASPLOS,MICRO,ISCA,TC,TOCS 和 TCAD。由于在深度学习处理器方面的创新性工作,杜子东曾获得 ASPLOS'14 最佳论文奖、中国科学院杰出博士学位论文奖、中国计算机学会杰出博士学位论文奖等多项荣誉。
他的博士论文《神经网络加速器研究》曾获得 2016 年中国计算机学会优秀博士论文奖,该文章系统研究了神经网络加速器设计的若干重要问题,提出了新型加速器架构,首次系统地从硬件角度比较不同类型的神经网络模型,创新地采用非精确技术进一步提升其能效,引领了国际相关研究。
邓岳
获奖理由:他将智能感知技术与脑科学交叉融合,启发新一代人工智能的研究。
邓岳现任北京航空航天大学宇航学院及大数据与脑机智能高精尖中心双聘教授、博士生导师,主要从事人工智能与交叉领域的研究。迄今为止,围绕航天智能、医疗智能及金融智能,邓岳以第一 / 通讯作者身份已在 Nature Methods、Patterns、IEEE Transactions 等刊物发表论文 40 余篇,其中影响因子高于 10 的期刊论文 8 篇,并在 Springer 出版人工智能英文专著一部。
邓岳曾获得 IEEE Transactions on Fuzzy Systems 2020 年度最佳论文奖,Microsoft Research Fellow,中国自动化学会、中国人工智能学会优秀博士论文奖等多项荣誉,并担任 AAAI、IJCAI 及 ICCV 等多个人工智能会议的程序委员。
黄高
获奖理由:他发明了新型神经网络架构,推动了深度学习的基础研究与技术应用。
黄高 2009 年于北京航空航天大学自动化学院获学士学位,2015 年 7 月于清华大学自动化系获博士学位,随后前往美国康奈尔大学计算机系攻读博士后。2018 年起,黄高担任清华大学自动化系助理教授、博士生导师。他的研究领域主要是机器学习和在视觉方面的应用。
黄高以 DenseNet 第一作者的身份而被人们所熟知,他的研究《Densely Connected Convolutional Networks》曾获 CVPR 2017 最佳论文,并被编入多本深度学习著作。图灵奖得主Yann LeCun教授将DenseNet与VGG、GoogleNet、ResNet 并列为当前四种主流的深度网络迄今为止,这篇论文的引用量已经接近 1.1 万次。
此外,他还曾 2016 年全国百篇重大影响国际学术论文、2018 年世界人工智能大会 Super AI Leader先锋奖、2019 年吴文俊人工智能优秀青年奖等多项荣誉。今年 7 月,黄高获得了由世界人工智能大会组委会、机器之心、AI 青年科学家联盟联合颁发的 WAIC 云帆奖。
黄高表示,他的研究理想是让深度学习像人脑一样高效,仿人脑的动态神经网络将出现 200 倍算力提升。
除了百万奖金以外,这些获奖人也获得了「达摩院青橙学者」称号,并与阿里达摩院实验室建立互访联系。阿里表示,会提供数据、场景、算力等研发资源,并配备专门的技术与工程团队,帮助青年学者将科学想法转化为现实。
达摩院院长张建锋说道:「我们很骄傲地看到,这些青年学者真正代表了时代的『硬核要求』。他们坚定的科学信念、追求卓越的工作态度和显著的科研成就正是青橙奖鼓励的。你们的成长与进步是对社会最好的回馈,只有更多青年投入基础科研,才能提升社会的原始创新能力。」
专访青年数学家杨诗武:
他为爱因斯坦做注脚
证明陶哲轩猜想:为研究同类问题提供新视角
在杨诗武所做的一系列重要工作中,距今最近的一项成果是与同在北京大学数学科学学院工作的韦东奕助理教授联合攻克华裔数学家陶哲轩的一个猜想,其研究论文《一维散焦半线性波动方程的渐近衰减》发表在论文预印本网站 arXiv 上。
图 | 论文《一维散焦半线性波动方程的渐近衰减》
图 | 杨诗武
杨诗武和韦东奕曾是北大校友,现在又成为北大同事。巧合的是,他们都还曾经是国际数学奥林匹克竞赛金牌得主。
为攻破该猜想,杨诗武前后断断续续花费了十年时间。他告诉 DeepTech,如果想理解该猜想,至少要学到大学高数课程偏微分方程。
图 | 论文涉及到的方程和结论
该猜想曾出现在陶哲轩的一篇论文中,主要涉及到一维非线性波方程解的性质,波方程可用于描述声波、水波、电磁波以及引力波等各类波的传播规律。实际科学问题中,大部分的波具备非线性特质,满足某种非线性方程,比如引力波满足爱因斯坦方程。
在时空中传播的波有个基本的特性,那就是衰减,比如声波,离声源越远,声音听起来越小;又比如手机信号,离基站越远,信号越差;即使是宇宙中发生的大事件制造的超强引力波,在太空中经过数千万至数十亿光年的传播,也会变得极为微弱。
但另外还有一种波,叫做一维线性波,它在介质中传播的过称中是不衰减的。比如抖动一根长绳,理想状态下,无论绳子有多长,绳子的抖动都会从一端传到另外一端。
杨诗武所证明的猜想就与波的衰减有关。他们的研究表明,相互排斥 的一维波的传播过程不同于线性波,是会衰减的。之前陶哲轩的工作是证明这种衰减在平均意义下成立,杨诗武的工作则是用不同的方法得到了更强的结论,这篇文章证明了一维散焦半线性波方程的解会一致衰减到零。
如何形象地理解这一猜想?杨诗武以夜晚用手电筒照向天空为比喻说明这一问题:手电筒光线不平行,而是往外扩散;当距离足够远之后,光线会变得特别弱,同时衰减的速度也会变得更慢。他要做的事情,是从理论上证明光线会一直衰减下去,直到完全的黑暗无光。
杨诗武的这项工作为进一步理解这类波方程解的渐近行为提供了基础,同时其方法也为研究非线性波的长时间行为提供了新的视角。
谈及本次解决的陶哲轩猜想,杨诗武直言,这并不是他最有代表性的研究。
用纯数学的方式夯实广义相对论
杨诗武的主要研究方向,是双曲偏微分方程和广义相对论。纵观他发表过的论文,其第一个主要研究方向是非线性波动方程,他被引用最多的论文是《非均匀介质中非线性波动方程的整体解》。
关于该论文,杨诗武告诉 DeepTech,这个领域的经典结论是:三维时空中的非线性波动方程存在小初值整体解,这好比微风拂过水面时只会引起小的涟漪而不会瞬间掀起大浪。
但这个经典结果有一个前提条件,即要求时空中的引力场或者曲率依时间逐步趋于零,也就是时空是齐次的。再次以前述水波的变化打比方:微风吹拂时只产生涟漪而不会突然掀起大浪的前提条件是,水面不能受到河岸或湖岸的干扰。中国古代很早就观察到一种现象:以手摩擦一个盛水的青铜盆子的外壁,盆子中的水面上有时会突然出现美丽的浪花或者喷射飞溅的水珠,这就是 “介质不齐次” 情形下水波出现共振、叠加而带来的结果。
杨诗武的这项工作则是把这个经典结论推广到一类非齐次介质中,也就是允许一块永远弯曲的区域存在于其中。
这项工作的意义在于发展了常用来研究波方程的向量场方法,从而改进了很多现有的结果,包括上面讨论的高维散焦半线性方程的长时间行为;同时为解决其他类似问题提供了强有力的工具,被广泛应用于研究黑洞附近空间中波的传播,以及非线性波的长时间行为上。
他的第二个主要研究对象是广义相对论中的爱因斯坦方程,他给出了爱因斯坦测地线假设的一个完整数学证明;他还构造了爱因斯坦方程的一些特殊解,比如质量为无穷但不存在黑洞的时空,以及具有任意初始质量和任意最终质量的包含黑洞的空间等等。
爱因斯坦测地线假设说的是:时空中不受外力作用的理想粒子的运动轨迹是类时测地线。类时指的是粒子速度不超光速,测地线可以理解为最短路径。但现实世界中是不存在有质量无大小的理想粒子的,根据爱因斯坦的广义相对论,当粒子进入时空后,在引力场的作用下,粒子的位置会发生改变,而粒子本身有质量,会产生引力场,因而会改变整个空间的引力场。
引力场的改变进而会修正粒子的运动轨迹。所以一个基本的问题是爱因斯坦的测地线假设是否跟广义相对论相容,换句话说如果用真实的粒子去逼近理想粒子,那么真实粒子的运动轨迹是否会趋于类时测地线。
剑桥大学的大卫 · 斯图尔特教授首先用某种非线性波方程的孤立子解来模拟理想粒子,证明了爱因斯坦测地线假设短时间内成立,也就是在很短的时间内,粒子的运动轨迹是类时测地线,之后粒子的运动轨迹就没办法精确描述了。杨诗武的工作是将这个短时间结果推广到任意时间,证明到任意时刻粒子的运动轨迹都是类时测地线。
至于 “质量为无穷大但不存在黑洞的时空” 这一爱因斯坦方程的解,杨诗武给 DeepTech 做如此解释:已知的结果是质量必定会导致黑洞存在,杨诗武构造的解却给出了任意时刻质量都为无穷大、但却不存在黑洞的空间。“目前暂不清楚这对应于何种物理意义。”
“具有任意初始质量和任意最终质量的包含黑洞的时空”,这个结论可以理解成时空初始质量和最终质量的比值可以是任意值,也就是这种时空的演化具有某种连续性。杨诗武表示,这跟霍金辐射没有关系,单纯是引力波损耗了时空中的质量。
“让学生在国内就能学到最前沿的知识”
这个世界上,有人走到中年才发现自己的兴趣所在,有人从小学开始,就已基本定下一生走向。杨诗武是后者。他从小就参加竞赛,毕业后也在做数学研究,属于典型的 “一心一意型” 的数学家。
他的学术经历看起来一帆风顺,2008 年从北大本科毕业后,赴美国普林斯顿大学留学,师从专门研究双曲偏微分方程和广义相对论的乌克兰裔数学家伊戈尔 · 罗德尼亚斯基。从普林斯顿大学博士毕业后,杨诗武去剑桥大学做博士后,合作导师是米哈利斯 · 达菲莫斯,后者以研究数学中的广义相对论著称。
当年出国读书时,年轻气盛的他在申请材料的个人陈述中曾这样写道:“不管在国外学没学成,都希望把我所学东西带回来,让中国学生往后不用费很大力气出去留学。”
2016 年,阔别故土 8 年后,杨诗武回到母校北京大学,任北京国际数学研究中心助理教授。学成后的杨诗武对留学的看法有所改变:“即使我们国家数学研究走到很前沿,年轻人也需要多出去和别人交流。”但他的初心 “让学生在国内就能学到先进知识” 并未改变。
杨诗武着意于人才的培养与传承;他还认为,当一个老师,能迫使自己时刻紧跟前沿,从而把最好、最新的知识教给学生。
普林斯顿大学的伊戈尔教授给他的影响最是深刻。记得读书时,杨诗武要做讨论班报告,伊戈尔让他把演讲稿写好,并让他在跟前排练。后来写论文时,伊戈尔一句一句帮他改,这是他读大学以来从未见过的。
现在自己当了老师,杨诗武也用同样的方式来教导学生。有学生曾这样撰文评价杨诗武的课程《实变函数》:“杨老师从上课到作业到考试都表现出他的确是一个认真负责的好老师。每次下课休息一定要休息满十分钟…… 此外很值得一提的就是杨老师的作业——自己留题,平均每次至少 8 道的样子。他的考试也比较硬核,而且和上课内容的关联比较紧密,因此靠自学不能完全应付…… 也许这就是‘硬课’的价值所在吧。”
在科研习惯上,杨诗武无论是出去散步、还是在家发呆,都会思考数学问题。有时想到一个问题,就想找到一张纸赶紧算一下。
1957 年,凭借 “弱相互作用中宇称不守恒理论” 获得诺奖的杨振宁,在听说该理论被实验证实时,感慨称:“看见了宇宙一个很深奥的秘密”“仿佛看到了凡人不该看到的东西”。
数学的深处同样隐藏着宇宙的奥秘。杨诗武说:“数学的广袤使得思路可以从无数方向出发,真正质变到来之前,你无法确定将经历多少场空欢喜…… 我和导师、同门也不知道这一生能推演到哪一步。但这不是一个人的事情,一拨一拨人不断推进,这本身就很美,不是吗?”
来源:综合机器之心公众号、DeepTech深科技等
声明:本文图片、文字版权归原作者所有。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除。