请解释一下集成运放虚短,虚断,虚地这几个概念

核心提示“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。

"虚地":输入端一端接地,有虚短可得V+=V-=GND。

由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10V~14V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。

扩展资料:

集成运放广泛用于模拟信号的处理和产生电路之中,因其高性能、低价位,在大多数情况下,已经取代了分立原件放大电路!

集成运放一般由输入端、输出端、偏置电路和中间集四部分组成。

虚短使用条件

1 运放的开环增益足够到,即放大倍数要大;

2 存在负反馈电路;

3 运放的输出Vo=G×Vi,在实际电路中Vo受到供电电压的影响是一个有限的值,放大倍数G如果足够大,那么输入Vi就要足够小,就导致流入运放的电流几乎为0,也就是虚断;“存在负反馈电路”这个地方,有的书上会写成“深度负反馈”,其实这是为了强调运放处于“线性状态”。

由于理想运放的输入电阻rd趋向于无穷,故流入运放同相输入端和反相输入端的电流ip,和in。均可近似为零,就像开路一样。

当然运放的输入端不能真正开路,只是因流人运放的电流远远小于外电路的电流,故近似看作断路,即ip=in  0这一特性称为“虚断”。

在分析运算放大电路时,虚短口vp=vn和虚断ip=in  0被视为分析运算放大电路的两颦锣警,分析通常是由此人手。

参考资料:

——虚短 ——虚断 ——虚地

通用型集成运放一般有机部分电路组成,每一部分常采用哪种基本电路?

O(∩_∩)O哈哈~我不说废话。

1。外接元件少,组成的电路结构清晰易懂。

2。电路性能好:放大倍数高,共模抑制比高,输入阻抗高,输出阻抗低,温度特性好。

3。各种性能的集成运放应有尽有,使得设计各种功能电路十分简单。

4。集成度高,功耗低,体积小,可靠性高。

5。易于大规模生产,价格低廉。

集成运算放大器构成基本运算电路的方法

通用型集成运放一般有机部分电路组成,每一部分常采用哪种基本电路?

通用型集成运放一般输入级、中间级、输出级和偏置电路四部分组成。输入级一般采用差模放大电路,以抑制零点漂移;中间级一般采用共发射极放大电路,以获得较高的放大倍数;输出级一般采用射极输出器,能有较强的带负载能力。

集成运放电路分析

运算放大器(简称“运放”)的作用是调节和放大模拟信号。常见的应用包括数字示波器和自动测试装置、视频和图像计算机板卡、医疗仪器、电视广播设备、航行器用显示器和航空运输控制系统、汽车传感器、计算机工作站和无线基站。 

理想的运放

理想的运放如图1所示。通过电阻元件(或者更普遍地通过阻抗元件)施加的负反馈可以产生两种经典的闭环运放配置中的任何一种:反相放大器(图2)和非反相放大器(图3)。这些配置中的闭环增益的经典等式显示,放大器的增益基本上只取决于反馈元件。另外,负反馈还可以提供稳定、无失真的输出电压。

电压反馈(VFB)运放

电压反馈运放与前文介绍的理想运放一样,它们的输出电压是两个输入端之间电压差的函数。为设计用途,电压反馈运放的数据表定义5种不同的增益:开环增益(AVOL)、闭环增益、信号增益、噪声增益和环路增益。

负反馈可以改变AVOL的大小。对高精度放大器来说,无反馈运放的AVOL值非常大,约为160dB或更高(电压增益为10,000或更高)。

图1:理想的运放。

AVOL的范围很大,在数据表中它通常以最小/最大值给出。AVOL还随着电压电平、负载和温度的变化而变化,但这些影响都很小,通常可以忽略不计。

当运放的反馈环路闭合时,它可以提供小于AVOL的闭环增益。闭环增益有信号增益和噪声增益两种形式。

运算放大器(简称“运放”)的作用是调节和放大模拟信号。常见的应用包括数字示波器和自动测试装置、视频和图像计算机板卡、医疗仪器、电视广播设备、航行器用显示器和航空运输控制系统、汽车传感器、计算机工作站和无线基站。

理想的运放

理想的运放如图1所示。通过电阻元件(或者更普遍地通过阻抗元件)施加的负反馈可以产生两种经典的闭环运放配置中的任何一种:反相放大器(图2)和非反相放大器(图3)。这些配置中的闭环增益的经典等式显示,放大器的增益基本上只取决于反馈元件。另外,负反馈还可以提供稳定、无失真的输出电压。

电压反馈(VFB)运放

电压反馈运放与前文介绍的理想运放一样,它们的输出电压是两个输入端之间电压差的函数。为设计用途,电压反馈运放的数据表定义5种不同的增益:开环增益(AVOL)、闭环增益、信号增益、噪声增益和环路增益。

负反馈可以改变AVOL的大小。对高精度放大器来说,无反馈运放的AVOL值非常大,约为160dB或更高(电压增益为10,000或更高)。

  图1:理想的运放。

AVOL的范围很大,在数据表中它通常以最小/最大值给出。AVOL还随着电压电平、负载和温度的变化而变化,但这些影响都很小,通常可以忽略不计。

当运放的反馈环路闭合时,它可以提供小于AVOL的闭环增益。闭环增益有信号增益和噪声增益两种形式。

信号增益(A)指输入信号通过放大器产生的增益,它是电路设计中头等重要的增益。下面给出了电压反馈电路中信号增益的两个最常见的表达式,它们被广泛用在于反相和同相运放配置中。

 

图2:反相放大器(a)和非反相放大器(b)是两种经典的闭环运放配置。

对于反相放大器,A = -Rfb/Rin

对于同相放大器,A = 1 + Rfb/Rin

其中,Rfb是反馈电阻,Rin是输入电阻。

噪声增益指运放中的噪声源增益,它反映了放大器的输入失调电压和电压噪声对输出的影响。噪声增益的等式与上述同相放大器的信号增益等式相同。噪声增益非常重要,因为它被用来确定电路稳定性。另外,噪声增益还是在波特图中使用的闭环增益,波特图可以向电路设计工程师提供放大器的最大带宽和稳定性信息。环路增益等于开环增益与闭环增益之差,或者等于输入信号通过放大器并由反馈网络返回至输入端的总增益。

 

图3:(a)波特图上的开环增益和噪声增益曲线;(b)电流反馈运放的频率响应。

 

电压反馈运放的增益带宽积

理想运放的增益和带宽都是无限大的。最常见的真实运放采用电压反馈,这种运放的增益和频率在被称为“增益带宽积(GBW)”的特性中是有关系的。电压反馈运放中的这种关系允许电路设计工程师通过控制反馈电阻(或者阻抗),在带宽和增益之间进行折衷。

对数响应曲线(波特图)给出 了电压反馈运放的增益随频率的变化关系,并有助于解释GBW。从直流到由反馈环路的主极点决定的频率之间,增益是恒定不变的。在该频率之上,增益以6dB/8倍程或20dB/10倍程的速率衰减。这称为单极或者一阶响应。6dB/8倍程的衰减速率意味着如果频率升高一倍,增益就会减半。电压反馈运放的这种特性使电路设计工程师可在带宽和增益之间进行折衷。

在一个波特图中画出运放的开环增益和噪声增益曲线,两者的交叉点决定了最大带宽或放大器的闭环频率(fCL)(图4)。这两条曲线的交叉点在波特图增益轴(纵轴)上处于比最大增益小3dB的位置上。事实上,噪声增益渐近地逼近开环增益。渐近响应和真实响应在fCL上下各一个倍程上之差将为1dB。

 

图4:(a)运放的输入失调电压;(b)运放的输入偏置电流。

电流反馈(CFB)运放

在电流反馈运放中,开环响应是输出电压对输入电流的响应。因此,与电压反馈运放不同,电流反馈运放输入和输出之间的关系不是用增益表示,而是跨阻来表示,单位为欧姆。但更常见的是采用跨阻表示,因此电流反馈运放也被称为跨阻放大器。电流反馈运放的跨阻在500kΩ~1MΩ之间。

与电压反馈运放不同,电流反馈运放没有恒定的增益带宽积。也就是说,当增益随着频率增加而滚降时,滚降速度不等于6dB/8倍程。电流反馈运放可以在较宽的增益范围内保持高带宽,但这是以反馈阻抗的选择有限制为代价的。例如,其中一个限制就是电流反馈运放的反馈环路中不允许有电容,因为电容会使高频下的反馈阻抗降低,从而导致振荡。由于同样原因,杂散电容也必须控制在运放的反相输入端周围。另外,电流反馈运放频率响应曲线的斜率特性要比电压反馈运放的好,虽然杂散电容会削弱电流反馈运放的这个优势。

电流反馈运放和电压反馈运放的不同特性还体现在其它方面。例如,电流反馈运放具有获得最大带宽的最佳反馈电阻值。增大反馈电阻会导致带宽降低,而降低电阻则将减小相位余量,并导致放大器不稳定。电流反馈运放的数据表提供在一个增益范围内所对应的最佳反馈电阻值,以及电源电压值以便使放大器具有最大带宽,这对设计过程很有帮助。最佳反馈电阻值对许多因素都比较敏感,甚至对运放的封装类型也敏感。数据表可能根据封装是小外形IC (SOIC)封装还是双列封装(DIP),给出不同的电阻值。

运放的重要特性

如果运放两个输入端上的电压均为0V,则输出端电压也应该等于0V。但事实上,输出端总有一些电压,该电压称为失调电压VOS。如果将输出端的失调电压除以电路的噪声增益,得到结果称为输入失调电压或输入参考失调电压。这个特性在数据表中通常以VOS给出。VOS被等效成一个与运放反相输入端串联的电压源。必须对放大器的两个输入端施加差分电压,以产生0V输出。

VOS随着温度的变化而改变,这种现象称为漂移,漂移的大小随时间而变化。漂移的温度系数TCVOS通常会在数据表中给出,但一些运放数据表仅提供可保证器件在工作温度范围内安全工作的第二大或者最大的VOS。这种规范的可信度稍差,因为TCVOS可能是不恒定的,或者是非单调变化的。

 

VOS漂移或者老化通常以mV/月或者mV/1,000小时来定义。但这个非线性函数与器件已使用时间的平方根成正比。例如,老化速度1mV/1,000小时可转化为大约3mV/年,而不是9mV/年。老化速度并不总是在数据表中给出,即便是高精度运放。

理想运放的输入阻抗无穷大,因此不会有电流流入输入端。但是,在输入级中使用双极结晶体管(BJT)的真实运放需要一些工作电流,该电流称为偏置电流(IB)。通常有两个偏置电流:IB+和IB-,它们分别流入两个输入端。IB值的范围很大,特殊类型运放的偏置电流低至60fA(大约每3µs通过一个电子),而一些高速运放的偏置电流可高达几十mA。

单片运放的制造工艺趋于使电压反馈运放的两个偏置电流相等,但不能保证两个偏置电流相等。在电流反馈运放中,输入端的不对称特性意味着两个偏置电流几乎总是不相等的。这两个偏置电流之差为输入失调电流IOS,通常情况下IOS很小。

总谐波失真(THD)是指由于放大器的非线性而产生的基频的谐波分量。通常情况下只需要考虑二次和三次谐波,因为更高次谐波的振幅将大大缩小。

THD+N(THD+噪声)是器件产生噪声的原因,它是指不包括基频在内的总信号功率。大多数的数据表都给出THD+N的值,因为大多数测量系统不区分与谐波相关的信号和噪声。THD和THD + N都被用来度量单音调(single-tone)正弦波输入信号产生的失真。

一个更有用且更严格的失真度衡量指标是互调失真(IMD),它可度量由双音调(two-tone)交互干扰的结果而不仅仅是一个载波所产生的动态范围。根据不同应用,一些二阶IMD分量可能可以滤除,但三阶分量的滤除则要更困难些。因此,数据表通常给出器件的三阶截取点(IP3),这是三阶IMD效应的一种最基本度量方式。因为三阶串扰产物引起的信号损坏在许多应用中(特别是在无线电接收机中)都非常普遍,而且很严重,所以这个参数十分重要。

1dB压缩点代表输出信号与理想输入/输出传输函数相比增益下降1dB时的输入信号电平。这是运放动态范围的结束点。

信噪比(SNR)定义了从最大信号电平至背景噪声的RMS电平的动态范围(以dB为单位)。

其它特性在射频(RF)应用中变得非常重要。例如,动态范围是器件能承受的最大输入电平与器件能提供可接受的信号质量的最小输入电平之间的比,如果器件的输入电平处于这两点之间,则器件可提供相对线性的特性(在放大器的限制条件下),若输入电平不在这两点之间,器件就会产生失真。

 

 

运放的类型

运放的供电

第一款单片运放正常工作所需的电源电压范围为±15V。如今,由于电路速度的提高和采用低功率电源(如电池)供电,运放的电源正在向低电压方向发展。

尽管运放的电压规格通常被指定为对称的两极电压(如±15 V),但是这些电压却不一定要求是对称电压或两极电压。对运放而言,只要输入端被偏置在有源区域内(即在共模电压范围内),那么±15V的电源就相当于+30V/0V电源,或者+20V/–10V电源。运放没有接地引脚,除非在单电源供电应用中把负电压轨接地。运放电路的任何器件都不需要接地。

高速电路的输入电压摆幅小于低速器件。器件的速度越高,其几何形状就越小,这意味着击穿电压就越低。由于击穿电压较低,器件就必须工作在较低电源电压下。

如今,运放的击穿电压一般为±7V左右,因此高速运放的电源电压一般为±5V,它们也能工作在+5V的单电源电压下。

对通用运放来说,电源电压可以低至+18V。这类运放由单电源供电,但这不一定意味必须采用低电源电压。单电源电压和低电压这两个术语是两个相关而独立的概念。

运放的工艺技术

运放主要采用双极性工艺技术,但在要求在同一芯片中集成模拟和数字电路的应用中,采用CMOS工艺的运放工作得很好。JFET有时在输入级采用,以增加输入阻抗,从而降低输入偏置电流。FET输入运放(无论是N沟道还是P沟通)允许芯片设计工程师设计出输入信号电平可扩展至负电压轨和正电压轨的运放。

由于BJT是电流控制型器件,所以输入级中的双极晶体管总是汲取一些偏置电流(IB)(图7)。但是,IB会流经运放外部的阻抗,产生失调电压,从而导致系统错误。制造商通过在输入级采用super-beta晶体管或通过构建一个补偿偏置输入架构,来解决这个问题。super-beta晶体管具有极窄的基极区,该基极区所产生的电流增益要比标准BJT中的电流增益大得多。这使得IB非常低,但这是以频率响应性能降低为代价的。在偏置补偿输入中,小电流源被加在输入晶体管的基极,这样,电流源可提供输入器件所需的偏置电流,从而大幅减小外部电路的净电流。

与BJT相比,CMOS运放的输入阻抗要高得多,从而使该电流源输出的偏置电流和失调也小得多。另一方面,与BJT相比,CMOS运放具有更高的固有失调电压和更高的噪声电压,特别是在频率较低的情况下。

按应用对运放进行分类

芯片制造商利用不同的电路设计和工艺技术来强调针对特定应用的某些运放特性。上表列出了这些运放类型的常用术语,以及它们的特性和应用范围。 

集成运放由哪几部分组成各部分的主要作用是什么

这么说吧,计算Uo1和Uo2,个人认为是没有意义的。

从功能上讲,第一个运放和PNP型的三极管构成了一个受控电压源和电流源,Uo1与具体的三极管参数有关,但它并不重要,重要的是,三极管与运放一起构成了负反馈电路。

具体分析如下:

1)根据叠加原理,第一个运放的同相端电压为:Ui2×R157/(R169+R157)+ 29×R169/(R169+R157),假设此电压为(U+)。

2)根据“虚短”,第一个运放的反向输入端电压(U-)与同向输入端电压(U+)相同,为1)当中的计算结果。

3)根据“虚断”,流入第一个运放反向输入端的电流为0,因此,流过R168的电流等于流过R137的电流,由此可以得到三极管上端的电压为:[(U-)-Ui1]/R168×R137 + (U-)。设此电压为U3

可见,三极管上端的电压是受控的,这是一个受控电压源。此电压又作为了第二个运放的输入。

注意到,R137、R141阻值都比R139大得多,而三极管导通时的通态电阻也较小,因此,可以近似认为流过三极管的电流就等于流过R139的电流 ,也就是说,Uo2其实不是电压输出,而是个电流源,计算Uo2没有意义。其电流输出为: (29-U3)/R139。

第二级运放就很简单了,自己计算吧。

集成运放的特性?实际的与理想的集成运放特性有哪些差异?

由输入级、中间级、输出级三部分组成。作用如下:

输入级:采用差分放大电路以消除零点漂移和抑制干扰。

中间级:一般采用共发射极电路,以获得足够高的电压增益。

输出级:一般采用互补对称功放电路,以输出足够大的电压和电流,其输出电阻小,负载能力强。

集成运放详解

简介

集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。

自从1964年美国仙童公司研制出第一个单片集成运算放大器μA702以来,集成运算放大器得到了广泛的应用,目前它已成为线性集成电路中品种和数量最多的一类。

国标统一命名法规定,集成运算放大器各个品种的型号有字母和阿拉伯数字两大部分组成。字母在首部,统一采用CF两个字母,C表示国标,F表示线性放大器,其后的数字表示集成运算放大器的类型。

集成运放按照外形分类

扁平式(即SSOP)

封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用S MD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。

单列直插式(即SIP)

最适合焊接,DIY友的最爱,因为这种封装的管脚很长,很适合DIY焊接,且比较坚固,不易损坏。

双列直插式(即DIP)

应用最广泛、最多的封装形式。绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

一、集成运放的开环差模电压传输特性

集成运放在开环状态下,输出电压UO与差模输入电压 Uid = U- - U+ 之间的关系称为开环差模传输特性。理论分析与实验得出的开环差模传输特性曲线如图Z0609所示。

曲线表明运放有两个工作区域:线性区(阴影部分)和非线性区(阴影两侧区域)。在线性区内:

UO = Aod(U- - U+),即输出电压与输入电压成线性关系。由于Uomax有限,而一般运放的开环电压放大倍数Aod又很大,所以,线性区域很小。应用时,应引入深度负反馈网络,以保证运放稳定地工作在线性区内。

在非线性区内,UO 与Uid无关,它只有两种可能取值,即正向饱和电压+Usat(U+ >U- )和负向饱和电压 - Usat(U->U+)。

两种区域内,运放的性质截然不同,因此在使用和分析应用电路时,首先要判明运放的工作区域。

二、理想运放的两个重要特性

为了突出主要特性,简化分析过程,在分析实际电路时,一般将实际运放当作理想运放看待。所谓理想运放是指具有如下理想参数的运放:

开环电压放大倍数 Aod = ∞

输入电阻 rid = ∞

输出电阻 ro=0

频带宽度 B=∞

共模抑制比 CMRR=∞

输入偏置电流 IB1=IB2=0

失调和温漂等均为零。

理想运放是不存在的,然而,随着集成电路工艺的发展,现代集成运放的参数与理想运放的参数很接近。实践表明用理想运放作为实际运放的简化模型,分析运放应用电路所得结果与实验结果基本一致,误差在工程允许范围之内。因此,在分析实际电路时,除要求考虑分析误差的电路外,均可把实际运放当作理想运放处理,以使分析过程得到合理简化。

工作在线性区域的理想运放具有两个重要特性:

1 理想运放两个输入端的电位相等。因为U--U+=UO/Aod,而Aod =∞ ,UO为有限值,故有:

U- = U+GS06004

2 理想运放的输入电流为零,这是由于rid = ∞,所以有:

Ii=0GS06005

这两条特性大大简化了运放应用电路的分析过程,是分析运放工作在线性区域的各种电路的基本依据,这两条特性常用"虚短"这个概念来概括。所谓"虚短",是指对电压而言,两个输入端是短路的;但对电流而言,两个输入端却是开路的。

运放在工作时都带有一定的正反馈或负反馈网络,因此,分析时首先要判别运放的工作状态。判别工作状态的依据是:

(1)若U->U+,则运放工作在线性区;

(2)若U+≥U-,则运放工作在非线性区。

理想运放工作在非线性区时,也有两个基本特性:

(1)运放的输入电流为零,即Ii=0;

(2)输出电压有两种可能取值:

U->U+ 则UO = - Usat

U+ >U- 则UO = Usat

U+ = U-只是两个状态的转换点。

综上所述,分析运放应用电路时,先将实际运放视为理想运放,然后,判别运放的工作状态,最后,按各个区域的特性结合电路分析理论进行分析计算。

 
友情链接
鄂ICP备19019357号-22