螺栓连接基本要求
普通螺栓作为永久性连接螺栓时应符合下列要求:
1对一般的螺栓连接,螺栓头和螺母下面应放置平垫圈,以增大承压面积。
2螺栓头和螺母侧应分别放置平垫圈,螺栓头侧放置的平垫圈一般不应多于 2个,螺母侧放置的平垫圈一般不应多于 1个。
3对于设计有要求防松动的螺栓、锚固螺栓应采用防松动装置的螺母或弹簧垫圈,弹簧垫圈必须设置在螺母一侧。
4对于承受动荷载或重要部位的螺栓连接,应按设计要求放置弹簧垫圈,弹簧垫圈必须设置在螺母一侧。
5对于工字钢、槽钢类型钢利用斜面连接时应使用斜垫圈,使螺母和螺栓头部的支承面垂直于螺杆。
螺栓使用位置分类要求
根据配电线路螺栓使用位置及功能,螺栓可分为:电气连接类、电气设备固定类、铁附件固定类三种。下面具体说明:
1电气连接类 :户外一次接线应采用热镀锌螺栓连接,所用螺栓应有平垫圈和弹簧垫圈,螺栓紧固后,螺栓宜露出 2~3扣。一根螺栓配两个平垫圈、一个弹簧垫圈、一个螺母。安装时螺栓头侧放置一个平垫圈,螺母侧放置一个平垫圈和一个弹簧垫圈,其中弹簧垫圈靠螺母。
2电气设备固定类:变压器、配电箱底座与铁附件连接如利用槽钢斜面螺栓连接固定时,一根螺栓配一个螺母、一个斜垫圈(槽钢斜面侧用)和一个平垫圈(平面2侧用)。利用槽钢平面螺栓连接固定时,一根螺栓配两个平垫圈、一个弹簧垫圈、一个螺母。安装时螺栓头侧放置一个平垫圈,螺母侧放置一个平垫圈和一个弹簧垫圈,其中弹簧垫圈靠螺母。隔离开关、跌落式熔断器、避雷器与铁附件的连接,原则上使用设备厂家提供的安装螺栓。
3铁附件固定类:铁附件连接螺栓孔为圆孔时,一根螺栓配一个螺母、两个平垫圈,铁附件连接螺栓孔为长孔时,一根螺栓配一个螺母、两个方形垫圈,安装时螺栓头侧和螺母侧各放置一个平垫圈(方形垫圈)。铁附件连接采用双头螺栓时,螺栓每端各配一个螺母、一个平垫圈(方形垫圈)。对于槽钢和工字钢翼缘上倾斜面的螺栓连接,则尽量使用斜垫圈,使螺母和螺栓头部的支承面垂直于螺杆。
螺栓的穿向要求
1、对立体结构:水平方向由内向外;垂直方向由下向上。
2 、对平面结构:顺线路方向,双面构件由内向外,单面构件由送电侧穿入或按统一方向;横线路方向,两侧由内向外,中间由左向右 (面向受电侧 )或按统一方向;垂直方向,由下向上。
3 、变压器台架平面结构:以变压器高、低压端子为参考方向,从低压端子端向高压端子方向穿;以变压器、电杆为参考方向,从变压器侧向电杆侧方向穿(由内向外穿)。
螺栓的紧固要求
连接螺栓应逐个紧固,螺栓的扭紧力矩不应小于表 4 的规定。若发现螺杆与螺母的螺纹有滑牙或螺母的棱角磨损以致扳手打滑的,应更换螺栓、螺母。
表 4:螺栓紧固扭矩标准
螺栓装配
1、装配前目视检查螺栓、螺母或被联接件的丝孔,应无磕碰、划伤,符合图纸或本规范所引用的标准。
2、在装配过程中,不得碰伤螺栓的螺纹部分。
3、螺栓的头部及螺母端面的垫圈,应与被紧固的零件平面均匀接触,不应倾斜,也不允许用锤敲击使两平面接触,螺杆应无弯曲变形。
4、被连接件应均匀受压,相互紧密贴合,连接牢固。
5、螺栓、螺母紧固时严禁使用不合适的扳手。
6、螺栓、螺钉装配时应该用手拧入大于 2~3个螺距,然后再用扳手或电动工具拧紧。
7、螺栓、螺母装配时,注意保护被联接件的漆膜、镀层及螺栓、螺母头部,不能损坏。
8、螺母拧紧后,螺栓头部应露出螺母端面 2~3个螺距,螺母和垫圈均以反面面向被连接体 (螺母标有字样的一面为正面 ,垫圈圆滑一面的为正面 )。
9、螺栓紧固后油漆标记 ,标记位一般用红色油漆点在螺栓与螺母的接触处。颜色可根据使用场所不同而更改,但颜色必须明显区分。
40Cr双头高强螺栓一般配什么材质的螺母
偏心螺栓调整件,适用托架为麦克弗逊车型。在螺栓选择时,要根据原有螺栓圆孔直径尺寸,来选择偏心螺栓型号。取下支柱上的螺栓后,大约可以调整外倾角±15——17度。安装时间大约20分钟左右。 别克专用。 安装说明第一步:卸下车轮后取出减震托架上部的原厂螺栓。 第二步:安装KTPL003偏心螺栓。安装方向有两个选择; 向正外倾方向调整(轮胎上部向外运动)时; 将螺栓凸肚朝向车外,金属定位片的舌头朝向车内方向插入。向负外倾方向调整(轮胎上部向内运动)时; 将螺栓凸肚朝向车内, 金属定位片的舌头朝向车外插入。第三步:带上螺母,使金属定位片上的小齿压入减震托架槽帮。第四步:装上车轮、传感器。第五步:转动螺杆,直至外倾角所需的度数。
如何保证液压油在液压系统中不泄漏?
1。高强螺栓所用材料的最大抗拉强度与淬火处理有很大关系,40Cr淬火处理后一般较难达到109S级高强螺栓的材质要求,在不是很严格的检验中,可以根据淬火处理后的表面硬度来判断材料的最大抗拉强度。除了处理工艺中的性能不同外,材质不同的高强螺栓,其在高应力状态下的延迟性断裂性能也是有所不同的。
2。 40Cr高强螺栓主要用于螺栓球节点网架中,其设计强度一般为390MPa(d>=30mm)或者430MPa(d<30mm),使用中不存在很高的预拉应力。当用于要施加很高预拉力的情况时,要注意了解和保证其延迟性断裂性能。20MnTiB高强螺栓的延迟性断裂性能好于40B的。
3。 根据GB/T1231-91, 109S螺栓推荐材料为20MnTiB(适用规格<=M24)和35VB(适用规格<=M30)。在淬火处理中,大直径高强螺栓不容易淬透,所以一般情况下不要采用过大直径的高强螺栓,若要使用,则应降低其工作应力。
(GB799、L型螺栓等,可生产螺纹直径6-120mm的地脚螺栓,长度不限,材质有:Q235、45#、Q345B、40Cr、35CrMoA等,地脚螺栓按类型可为直钩式、弧钩式、锚瓜式和加劲锚板式,,Q235材质地脚,35#钢地脚 其中有24000套高强螺栓材质为40,有210")0套高强螺栓材质为2铜街子工程施工用的明渠进厂运输挢和砼施工栈桥钢梁均已安装完毕并投入运行二座桥梁布置示意图如下(图1):一,高强螺栓连接用于钢结构
扭剪型高强螺栓 109级 摩擦型连接 摩擦系数045 螺栓材质 20锰钛硼(20MnTiB) 螺母材质 15锰凡硼(15MnVB) 这种螺栓采用什么国家标准,在采购时如何向厂家提出要求 GB/T3632-2008 钢结构
碳钢与合金钢螺栓、螺钉和螺柱的机械性能的标记:
(1)碳钢与合金钢螺栓、螺钉和螺柱(螺纹直径为16-39mm,工作温度为-50℃—300℃)的性能等级标记代号共有10个,既36、46、48、56、58、68、88、98、109和129(用易切削钢制造的螺栓、螺钉和螺柱的工作温度不能超过250℃)。其中88级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。
(2)螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。
例如,性能等级46级的螺栓,其含义是:
a、螺栓材质公称抗拉强度达400MPa级;
b、螺栓材质的屈强比值为06;
c、螺栓材质的公称屈服强度达400×06=240MPa级
性能等级109级高强度螺栓,其材料经过热处理后,能达到:
a、螺栓材质公称抗拉强度达1000MPa级;
b、螺栓材质的屈强比值为09;
c、螺栓材质的公称屈服强度达1000×09=900MPa级。
螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。
希望对你能有所帮助。
双头螺栓有什么用处?
(1)由于加工不良导致泄露
①密封槽过深或过浅、相对运动件的密封接触面椭圆度、锥度极差等,从而使O型密封圈安装后很难得到均匀且准确的压缩量。试举一例,在圆柱面上,轴和孔的环形槽都容易车深或挖浅,使O型圈的压缩量达不到预定数值,从而导致漏油现象,该情况在低压条件下可能不明显或不泄露,但高压条件下则易引发严重后果。
第二种情况是,当设备平面密封时,若O型密封槽过浅,将造成安装时槽卡不住O型圈从而形成脱落,,甚至还可能将密封圈挤压到结合面之间。这种状况下,短时间内可能并未出现泄露,但时间久了之前挤在结合面间的部分橡胶或将被高压油挤出,从而漏油。
②平面密封的固定螺孔深度不适合,假如坚持用原来设计的螺钉予以连接或出现过长问题,即使表面看上去已拧紧,而实际两个平面却并未贴紧,由于密封不严而导致漏油,假如是高压状态,甚至可能直接挤坏密封圈。
③平面密封部分的定位误差导致漏油。液压泵(或阀)体四个螺孔位置与法兰盘四个通孔位置,由于加工时造成误差,或导致一或两根轴线无法重合,从而形成一个偏心e,使阀体孔一边落于O型密封圈平均直径的外部,最终产生间隙引发漏油问题。
④在同一平面内装有多个O型密封圈,其尺寸可能均不相同,其安装槽又有止口型和凹槽型两大类。此外,造成泄露的原因还包括端面上的压力不足,压缩量不均匀、止口尺寸较小、O型圈在工作阶段易脱落,结合面不平行、平面和螺孔不垂直、结合面光洁度过差,凹槽边缘太薄使受力后出现卷边等现象都可能是漏油的起因。
⑤设备中使用组合密封垫之处,若孔(包括螺孔)的倒角加工过大时,也将产生一定程度的漏油。
⑥密封面粗糙造成泄露。若密封面加工较为粗糙,则当管接头拧紧时,对密封圈的表面造成划伤,情节严重时,会使得组合密封圈的挂胶尖部软化,随后导致密封失效以形成泄露,因此需要加工厂家都选择使用经过软化处理的紫铜垫(其硬度为HB=32~45)以取代组合密封垫,该配件仅可使用一次,若拆卸后再使用,将导致密封效果大大降低。
(2)由于安装(装配)不当而造成泄露
①管接头的安装:管接头漏油在泄漏事故中所占的比例较大。
I管接头在紧固螺母和接头上的螺纹要配合适当,过松或过紧都可能导致漏油;
II安装接头时应注意对中;
III密封带及密封剂的使用:
密封带的缠向必须顺着螺纹旋向,一般1圈~2圈,缠的层数越多,工作阶段越容易出现松动,严重时会引发泄露。若用液态尼龙密封剂作为螺纹与扣之间的填料,温度不可超过60℃,否则会出现熔化导致液压油从扣中溢出;
IV用扩口薄管接头,先将紫铜管退火,随后再加工成圆且光滑的喇叭口;
V焊接管接头与管道的连接:
②安装U型密封槽时,压紧力过大会产生卷唇现象,从而引发泄露。
③油封的泄露。
(3)由于维护及选材不当而引发泄露
①密封圈表面损伤造成密封泄露;
②间隙咬伤及密封圈翻扭引起泄露:
由于密封圈材质较软,密封间隙较大,又常在高压往复运动下工作,容易被挤入间隙内咬伤。为此,当密封圈在高压下往复运动工作时,应尽量减小间隙,选用材质较硬的密封圈,。这类密封圈品种很多,具体要求为在系统压力达10MPa时,运动径向间隙为02mm,若选用密封材料硬度为HS70时,则会出现挤出现象,材料硬度为HS80时,就可很好的避免O型圈被挤入间隙中;
③油液遭污染后,将损坏密封,从而造成泄露;
④提高密封圈质量
想提高密封圈质量,首先应从选材、几何形状和加工精度这三个方面加以考虑,还可结合结构设计、制造工艺、模具制造、维护使用等多个方面综合加以控制。
液压油泄漏的解决措施
不同的液压系统,其漏油的原因可能会与选用的元件与自身工艺、规格、结构等要素等相关,这里我们将举例说明。
(1)分片式多路阀片
型号为ZFS-L20H2-YM-T的串联油路换向阀为分片式结构(每片换向阀做成一片,用螺栓分别相连),其由进油阀片、出油阀片和若干块中间阀片所组成,在横向冲击时存在一定漏油问题,这种情况下的漏油可能包含两种原因:
①换向冲击时,双头螺栓承受周期性拉力负荷,升压时,螺栓受拉伸作用;减压时,恢复原状而收缩。如此一来,多路阀阀片微观上将呈现一张一合的状态,因而出现向外渗油的现象。当压力达21MPa时,其最大张口量为005~015mm,压力越高,渗油问题越严重;
②O型圈底面加工粗糙,压力油外渗,降压时,阀片间张口闭合,油液被挤出并向外渗透。
出现以上情况时,可采取的治漏措施如下:
①O型圈槽底面采用挤压和喷镀金刚石棒研磨的工艺,以提高底面的光洁度,使其达△6;
②选择优质O型圈,保证其具备良好的密封性能;
③双头螺栓采用高强度的金刚材料;
④阀片间隙可添加一个回油通道,把微渗的油引入油箱内,从而彻底解决渗透问题。
(2)3MPa系列二位二通换向阀
当使用这类换向阀时,经常可能出现阀体安装结合面有渗透现象,无论如何拧紧螺钉或更换O型密封圈均无法解决问题,如果对其进行全面检查和分析,不难发现造成泄露的原因在于阀的结构和制造工艺不良。这种情况下,一般阀体安装面上有两个小孔,上面装有钢球堵塞,压装钢球时,孔口受挤压时容易发生塑形变形而鼓起,为此造成孔口边缘部分高于阀体安装平面。
无论如何拧紧螺钉,阀体平面与安装底板之间始终会存在间隙,从而影响到结合面上各油口O型密封圈的压紧,产生泄露。当这一系列原因查明后,把钢球打入孔内,用细油石把小孔边缘凸起部分仔细修磨平整,随后重新安装使用,此时应不会再出现泄漏现象。
(3)法兰盘结合面漏油
通常一对法兰盘的结合面不应有漏油现象,但由于维修其他部位而将其拆开再装配时,螺栓拧紧后便有渗漏现象发生。出现这种情况,经仔细查明后,将发现是装配过程中,法兰盘已转过一个角度(90°或180°),其根本原因在于加工误差所导致。原装配时,把相结合的两个法兰盘位置误差同时偏转向同一方向,随后误差便消除,通油孔仍可密封住。需二次装配时,因位置相对改变,两个法兰盘的位置误差将朝相反方向偏移,结果误差随之增大。通油孔处的O型密封圈无法封住油,从而导致泄露,根据以上查明原因针对性予以调整,此时便不会再出现泄露现象。
建筑幕墙预埋件处理?
1、用在主体为大型设备,需要安装附件,比如视镜、机械密封座、减速机架等,这是就用到的双头螺栓,一端拧入主体,安装好附件后另一端带上螺母,由于附件是经常拆卸的,螺纹会磨损或损坏,使用双头螺栓更换会非常方便。
2、用于连接体厚度很大,螺栓长度非常长时,会用双头螺栓。
建筑幕墙依据不同的面板材料分为玻璃幕墙、金属幕墙和石材幕墙三大类,无论哪类幕墙,其承载结构体系与建筑主体结构的连接,通常都是通过预埋件或后加锚固件来实现的。幕墙除了承受自重荷载外,还要承受风力、地震等荷载的影响,因此预埋件与建筑主体结构的连接是否可靠耐久,直接关系到幕墙的结构安全与使用寿命。
一、埋设件的分类及构成
埋设件按其形成时序分为预埋件和后置埋件,其中预埋件分为爪式埋件和槽型埋件。
11预埋件
预埋件是预先安置(埋藏)在结构内的构件即在结构浇注时留设在结构中的由钢板和锚固筋的构件。
111 普通爪式埋件
锚筋,锚板通过焊接而成锚筋可制成直形,弯形,弯钩型。
112 埋板带预留槽式埋件
此种埋件在普通爪式预埋件基础上增加了预留槽,连接起来非常方便,及时在埋件位置误差较大的情况下,也可像普通埋件一样焊接处理,灵活性较大。
113 爪形埋件 (A~F为几种常见类型,如图所示)。
114 槽型埋件
金属槽可由钢板折弯,铸件,锻件制成。锚筋与金属槽可制成一体,或焊接而成。这种形式的预埋件具有体积小施工方便的优点,目前已经国产化,且已形成系列。施工中常用到槽型埋件长度为300mm,锚筋长度为100mm或60mm。
槽型埋件与平板预埋件的优缺点对比
槽型埋件为幕墙施工中常用的一种形式,由于其与平板式预埋件相比有较多的优点,因此槽型预埋件在幕墙工程中的应用逐渐增多。
(一)槽型预埋件与平板预埋件比较的优点
1、从生产加工角度比较
槽型预埋件加工工艺简单,质量检验方便,一般加工一个槽型预埋件的功效是加工一个平板预埋件功效的3倍。
2、从经济性角度比较
槽型预埋件价格便宜,节省工程造价。一个槽式埋件的重量约为2公斤左右,外加两个T型螺栓,一套槽型埋件的价格大概为25元左右。而一个平板埋件的重量大约为6公斤左右,价格约为60元左右,槽型埋件的价格约为平板埋件的一半以上。
3从施工的难易角度比较
槽型埋件体积小,施工非常方便。槽型预埋件的锚筋只有一排,而且槽型预埋件的槽钢体积较小,不容易与主体结构的钢筋发生干涉,施工周期短,大大提高施工进度。而平板预埋件所占的体积大,锚筋一般为两排两列布置,非常容易与主体结构的主筋发生干涉,由于施工工人不是非常清楚主筋的重要性,偶尔为了埋设平板预埋件而把主体结构的主筋锯断,这样就会对建筑埋下安全隐患。另外,由于槽型预埋件的体积小,当主体结构为一较薄的板式结构时,只能采用槽型预埋件而不能采用平板式预埋件。
4从是否方便幕墙龙骨的安装角度比较
槽型预埋件与幕墙龙骨的转接件采用T型螺栓连接,现场不需要焊接,安装非常方便。槽型预埋件是通过在其槽口内能够自由水平滑动的T型螺栓与幕墙龙骨转接件相连接,转接件与T型螺栓连接处在竖直方向上开长型孔,转接件与幕墙龙骨连接处在垂直于幕墙面方向上开长型孔,这样就实现了幕墙龙骨安装的三维调整,安装十分方便。如图所示。平板预埋件也能实现三维调整,但是调整完之后需要焊接来固定,一方面给现场施工增加了难度,另一方面也增大了发生火灾的可能性。
(二)槽型预埋件与平板预埋件相比的缺点
槽型预埋件与平板预埋件相比,最为明显的缺点就是槽型预埋件的承载能力要比平板预埋件小很多,槽型预埋件的抗拉承载力设计值为32KN,抗剪承载力设计值为23KN,而平板预埋件的抗拉承载力设计值为140KN,抗剪承载力设计值为55KN左右,因此,当幕墙的跨度较大时,或者幕墙面离结构面较远时,槽式预埋件就不合适了,只能选择平板预埋件。
12 后补埋件
后补埋件即平板埋件,通过普通膨胀螺栓、化学锚栓或穿透螺栓(双头螺柱)以及焊接封闭钢板等方式实现埋件的固定。
121 后补埋件的几种施工方法
①普通膨胀螺栓固定
②化学锚栓固定
③穿透螺栓(双头螺柱)固定
④包箍钢板焊接(通常用于柱或梁)
⑤后补做土建结构同时埋设预埋式埋件。
⑥以上几种形式的复合形式。
13 埋件的埋设方式
埋件按其在主体结构上的位置划分,可分为上埋式、侧埋式和下埋式,其中下埋式受力较为不利,应谨慎使用。
后补式埋件只能通过膨胀螺栓和化学锚栓和主体结构进行连接。由于后补式埋件的安装质量受现场施工的条件和人员的影响非常大,不容易控制,经常达不到设计指标,尤其是国家已明文规定受拉部位不允许使用膨胀螺栓,所以尽量不采用后补式埋件。1/5 12345下一页尾页
二、埋件设计
1埋件与主体的连接强度直接决定了整个幕墙的安全,必须严格控制。在埋件设计时应注意以下几点:
(1)预埋式埋件锚筋与埋板的尺寸和位置在设
计时应严格依据《玻璃幕墙工程规范》
(JGJ102-2003)及《混凝土结构设计规范》
(GB50010-2002)进行设计。
(2)注意锚筋的长度不要超过结构尺寸(如梁厚度),避免锚筋露出结构外。
(3) 爪形埋件中A、B两型锚筋宜采用螺纹钢。C、D型的锚筋在设计时应考虑锚筋间的干涉及锚筋在安装时与结构配筋之间的干涉问题。E、F型埋件适合于需要进行防雷的部位。
(4)埋板的大小在设计时应考虑幕墙的结构形式的需要。
2重视埋件的技术要求
(1)预埋件技术要求是建设方必须重视的幕墙专项设计内容,根据其受力情况(拉、剪、弯)计算确定锚板规格、锚筋直径、长度以及焊缝厚度等,其中锚板的最小厚度和锚筋的间距,锚筋到锚板边缘距离,预埋件其承载力以及连接件与主体结构的锚固承载力必须通过计算或实物试验予以确认,符合规范要求,但是建设方常常对埋件专项设计不够重视,甚至忽略规范要求,草草的安排土建施工预埋,这种缺乏科学的设计以及盲目预埋,既造成大量预埋件报费,又增加了幕墙安全隐患。
(2)后置埋件技术要求除考虑各类螺栓本身性能差异外,还要考虑基材性状、锚固连接的受力性质、被连接 结构的类型、胡无抗震设防要求等因素。膨胀型螺栓、扩孔型螺栓不得用于受拉和边缘受剪(边距C<10hcf锚件有效锚固深度),拉剪复合受力的结构构件及生命线工程的非结构构件的后锚连接。化学植筋及螺杆,在满足锚固深度的化学植筋和螺杆可应用于抗震设防烈度不大于8级的受拉、边缘受剪、拉剪复合受力之的结构构件和非结构构件的后锚固连接等待。
3埋设件的构造规定
旧规范JGJ102-96《玻璃幕墙工程技术规范》原样照搬GBJ10-89 《混凝土结构设计规范》。新规范JGJ102-2003关于预埋件设计较旧规范在适应幕墙行业荷载较小等特点方面有一定改进,如取消了锚板厚度与锚筋中心距之比≥1/8的规定;以及受拉锚筋长度降低到≥15d等。这些还是不能满足在较小截面混凝土构件上设置埋设件的需要,工程上经常要面对监理按规范检查锚筋长度不符合规范规定的尴尬。据了解,幕墙行业至今还没有发生过因埋设件抗力不够而导致幕墙损坏事故,这说明现行埋设件是安全的,同时也在某种程度上反映埋设件是保守的,尚有继续改进的空间。
4-1锚筋截面积
新规范对锚筋最小截面积进行了规定,提供了锚筋最小截面积计算公式。根据本人经验,由于作用于一般幕墙埋设件上的荷载较小,按构造确定的锚筋截面积均能满足规范要求,故在一般情况下,无须进行锚筋截面积验算。
4-2埋设件的材质
规范规定预埋件的锚板宜采用Q235级钢。锚筋应采用HPB235,HRB335或HRB400级热轧钢筋,严禁采用冷加工钢筋。 根据幕墙设计情况,作如下说明:
(1)规范对锚板材质只要求采用Q235级钢,并未明确规定A,B,C类中的哪一类。幕墙行业中流行一种就高不就底的倾向很不可取,只要能满足使用要求,越经济,越具有竞争力。
(2)锚筋可以采用常用的建筑钢筋之中的任意一种。采用HRB335级钢筋作锚筋最合适。HPB235钢筋为光面,端部必须做弯钩,制作和安装较变形钢筋难。而HRB400钢筋价格较贵,加工较难。
(3)钢筋按制作方式可分为热轧钢筋,热处理钢筋和冷拉钢筋。建筑工程大量使用的HPB235钢筋和HRB335钢筋都是热轧钢筋。冷拉钢筋亦称冷加工钢筋,通过冷拉工序,提高了材料的屈服极限,增加了强度,缺点是降低了塑性,材质变脆,冷弯性能差,不适宜作冷弯材料,所以,规范规定锚筋严禁采用冷加工钢筋是正确的。热轧钢筋的冷加工,如冷弯,是允许的,并在施工中被大量应用。认为热轧钢筋不能进行冷加工,热轧钢筋锚筋不能弯折,是把冷加工钢筋与钢筋冷加工两种不同概念混淆了。
4-3锚筋的锚固长度规范所说的锚筋的锚固长度是指充分利用锚筋的抗拉强度时允许采用的最小构造长度。
(1) 当计算中充分利用锚筋的抗拉强度时,其锚固长度应按下式计算:
式中 光圆钢筋(如HPB235钢筋):α=016;带肋钢筋(如HRB335钢筋):α=014。
钢筋设计强度:HPB235钢筋 =210N/mm ;HRB335钢筋 =300N/mm混凝土强度等级:
C20 C25 C30 C35 C40 对应的混凝土抗拉强度 ( N/mm ): 110 127 143 157 171
d为钢筋直径
44锚板厚度锚板厚度应根据其受力情况通过计算确定。
计算简图为点支平面板,锚筋支点之间的距离是确定板厚的主要因素,《混凝土结构设计规范》规定锚板厚度与锚筋中心距之比≥1/8的原因就在于此。根据幕墙特点,新规范没有采用这款规定,对锚板厚度限制较宽。当前设计锚板厚度较随意,有的锚板面积较大厚度较小,有的锚板面积较小厚度却较大。我认为,一般情况下幕墙4锚筋埋设件,锚板边长<250mm时,板厚8mm;250mm≤边长<350mm时,板厚10mm;边长≥350mm时,板厚12mm为宜。
45锚筋锚板连接锚筋与锚板一般采用T型焊连接,当锚筋直径大于20mm时,宜采用穿孔塞焊,焊缝等级为三级。不同强度钢材连接时,采用强度较低钢材所适应的焊条。工程上,采用E43X(0~5)型焊条,焊缝高度 mm,可以满足一般幕墙埋件焊接要求。
46埋件的质量标准
(1)预埋件的品种、类型、规格、尺寸、性能、板材的壁厚、表面处理应符合设计要求,且应有出厂合格证。
(2)预埋件的焊接处理,必须检查钢筋钢板的品种是否符合设计要求及强制性标准规定,
(3)预埋件(平板、槽型)锚板采用Q235B级钢,锚筋采用HRB335或HRB400级(带肋)热轧钢筋。
(4)直锚筋与锚板采用T形焊,当锚筋直径小于20mm,采用压力弧焊;当锚筋直径大于20mm,采用穿孔塞焊;不允许把锚筋弯成L形与锚板焊接。
(5)当预埋件表面采用热浸镀锌防腐处理时,锌膜厚度应大于45微米。
(6)预埋件制作时,锚板、锚筋及锚筋与锚板面垂直度等允许偏差应按规范控制,其中锚筋长度不允许负偏差。2/5 首页上一页12345下一页尾页
三、建筑幕墙预埋件施工要求
(一)标准JGJ102—2003第55条款相关规定要求:
1.主体结构或结构构件,应能够承受幕墙传递的荷载和作用。连接件与主体结构的锚固承载力设计值应大于连接件本身的承载力设计值;
2.玻璃幕墙立柱与主体混凝土结构应通过预埋件连接,预埋件应在主体结构混凝土施工时埋入,预埋件位置准确;当没有条件采用预埋件连接件时,应采用可靠的措施,并通过试验确定其承载力。
3.由锚板和对称配置的锚固钢筋所组成的受力预埋件,可按照本规范附录C的规定进行设计。
4.槽式预埋件的预埋钢板及其它连接措施,应按照现行国家标准《钢结构设计规范》GB 50017的有关规定进行设计,并通过试验确定其承载力。
5.玻璃幕墙构架与主体结构采用后加锚栓连接时,应符合下列规定:
(1)产品应有合格证;(有钢材化学成分和力学性能试验报告,有设计方法资料和出厂合格证)。
(2)碳素钢锚栓需进行防腐处理;
(3)后加螺栓必须在现场进行单体拉拔试验和节点(群体)拉拔试验,试验所加荷载应达荷载设计值的15倍而无明显滑移,必要时应在检测单位进行极限拉拔试验。
(4)每个连接点后加螺栓不得少于2个,螺栓间距和螺栓到构件边缘的距离不应小于70mm,宜设计成螺栓受剪的节点;
(5)螺栓直径应通过承载力计算确定,并不得小于l0mm;
(6)不宜在与化学锚栓接触的连接件上进行焊接操作;
(7)锚栓承载力设计值不应大于其极限承载力的50%。
6.幕墙与砌体结构连接时,宜在连接部位的主体结构上增设钢筋混凝土或钢结构梁、柱。相连接的主体结构混凝土强度等级不宜低于C30。幕墙不应连接在砖石砌体上,更不得与轻质墙连接。
(二)后锚固件的施工要求后锚固件在建筑幕墙施工中广泛使用,特别在旧楼改建、扩建的幕墙工程大量,甚至全部使用后锚固件。幕墙工程中大量、甚至全部采用后锚固件,加上施工质量未能得到很好的控制,会给幕墙使用带来安全隐患。
对于后锚固件的施工要求在规范《混凝土结构后锚固技术规程》JGJ 145—2004,有明确的规定。
1 后锚固件有膨胀型螺栓、扩孔型螺栓、化学植筋及其它类型螺栓。
后锚固件使用时,除考虑各类螺栓本身性能差异外,尚要考虑基材性状、锚固连接的受力性质、被连接 结构的类型、胡无抗震设防要求等因素。
膨胀型螺栓、扩孔型螺栓不得用于受拉和边缘受剪(边距C<10hcf锚件有效锚固深度),拉剪复合受力的结构构件及生命线工程的非结构构件的后锚连接。(建筑非结构构件包括:围护外墙、隔墙、幕墙、吊顶、广告牌等)
化学植筋及螺杆,在满足锚固深度的化学植筋和螺杆可应用于抗震设防烈度不大于8级的受拉、边缘受剪、拉剪复合受力之的结构构件和非结构构件的后锚固连接。
2 注意锚固栓的施工质量。对于锚固栓的施工,在标准《混凝土结构后锚固技术规程》JGJ 145—2004中规定:
(1) 锚固栓钻孔要求: 见下表
孔径直径允许偏差
孔深允许偏差
垂直度允许偏差
位置允许偏差
≤05mm
膨胀、扩孔型螺栓 0 10 mm
化学植筋:0 20 mm
≤50
5mm
四、预埋件的施工的质量问题
(一).设计计算问题
部分幕墙工程,特别是中小幕墙项目,对幕墙专业设计重视不够,有的设计只有简单的几张设计图纸,没有预埋件的埋设位置图,没有结构力学计算书,有的虽有计算书,但没有预埋件的计算,也未进行复核。
(二).平板预埋件的焊接质量
1 预埋件常见形式是由锚板上焊接锚筋所组成。(锚筋不得采用冷轧钢筋,当锚筋直径≥10mm时采用Ⅱ级变形钢筋,包括月牙纹及螺纹钢筋,见《钢筋混凝土结构预埋件》JSJT-203)早期的做法是把钢筋弯折后直接焊到锚板上,现在基本采用锚板上钻孔后塞焊的方式,后者比较可靠。锚板与锚筋的焊接质量是预埋件的质量关键。要保证焊接质量,电焊操作工必须经培训持证上岗。预埋件的验收也是关键,不仅检查外观质量,防止出现虚焊、脱焊,还要按规定进行锚板与钢筋的焊缝强度检查。
2 预埋件埋设多数偏离设计位置,造成不能使用。
造成原因有:
(1)预埋件在土建施工时已埋设,后因幕墙设计分格的改变或变更造成不能使用。
(2)预埋件捆扎不牢,施工时混凝土浇灌、捣固时使预埋件位移、偏斜。
《玻璃幕墙工程技术规范》JGJ102—2003 第1023条款:玻璃幕墙与主体结构连接的预埋件,应在主体结构施工时按设计要求埋设,预埋件的位置偏差不应大于20mm。
3.后置锚固件施工质量问题
(1)轻质墙体上安装后锚固件
有的工程楼层跨度较大,立柱的挠度计算或强度计算未能通过,因此有的设计人员则在上下层梁之间增加一个支点,如果这一支点是在钢筋混凝土(或钢结构)构造梁(柱)上是有效的。有的框架结构建筑物其砌体通常都选用轻质填充墙,若把增加的支点放在轻质填充墙上,即使是采用钢板加穿墙螺栓,也则无法起到有效的支承作用。所以规范规定:幕墙不应连接在砖石砌体上,更不得与轻质墙连接。
(2)锚固基体不实不可靠,如砼体基材强度不够,边距不够,都会导致砼基材崩裂造成锚固失效。
(3)后置锚固件偏位。钻孔经常遇到钢筋时产生偏位和偏斜,还有孔洞粉屑碎渣清除不净,造成锚固件使用时松动。
规范规定:后加螺栓必须在现场进行单体拉拔试验和节点(群体)拉拔试验,试验所加荷载应达荷载设计值的15倍而无明显滑移,必要时应在检测单位进行极限拉拔试验。试验的结果应与设计计算进行校核,要求锚栓承载力设计值不应大于其极限承载力的50%。
4 化学锚栓质量不高
幕墙行业后置埋件普遍使用化学螺栓。九十年代化学螺栓产品从国外引进应用于建筑工程上,近年来,国内众多厂家纷纷跟进,大量生产,市场价格从十几元到二三元都有,可谓是品牌杂多、鱼目混珠、质量不一。化学螺栓的锚固胶起着粘结砼基材与锚筋的作用。目前市场上出现多种化学成份的化学锚固剂,比较常用的是改性环氧树脂、乙烯丙烯酸树脂和不饱和树脂三类。锚固胶的物理化学性能直接影响锚固效果,除几家进口知名品牌宣传资料有锚固胶的耐久、耐温、冻融性等测试指标,大部分厂家产品介绍只有抗酸碱、抗热防火、温度敏感度低等模糊宣示。
尽管现场拉拨力测试满足设计要求,但由于由于锚固胶的耐久性目前只有通过实验室预测,而且电焊高温对锚固剂的影响,无人说得清楚,难怪业内人士对锚固胶的耐久性提出质疑,对某些低廉的产品大量使用表示担忧。
后置埋件不锈钢螺栓应提供合格证、材质力学性能报告并进行力学性能复验。
在全国建筑工程装饰奖(建筑幕墙类)复查中,发现受检的部分工程后置锚固件的施工和现场抗拉拔力测试还存在问题。
(1) 有的工程没有预埋件,采用多种规格的化学螺栓作为处理后置预理。在可观察到的部位,螺栓的外露长度不一,有的明显感到螺栓与砼基体的有效接触长度不够。
在旧楼改造时,墙面存在粉刷层(正常情况下为20mm)螺栓埋设有效深度还应考虑粉刷层厚度。如有一旧楼改造工程,原墙面是贴面砖,为补偿结构构造的不垂直,采用增加墙面粉刷层厚度方法,使其厚度最大可到7—10mm,如果此工程采用化学螺栓作为后置埋件应非常谨慎,应采用穿墙螺杆加锚板或采用其它可靠的连接方法。
(2) 有的工程仅在试验室用试块上进行拉拨力检测,没有进行现场拉拨力检测,或仅进行其中1-2种螺栓检测,如某一工程使用4 种不同规格化学螺栓,而只有2种规格的螺栓进行检测。
(3) 螺栓现场拉拨力检测数量不够,有的工程仅进行一组(3件)象征性的检测。
按规定螺栓现场拉拨力检测应在同型号、同规格、基本相同的部位组成一个检验批,抽批数量按每批螺栓总数的1‰,且每批不少于3个。
(4) 对检测结果没有与设计计算进行校核。确保锚栓承载力设计值不应大于其极限承载力的50%。
5 槽形预埋件问题
槽型预埋件具有调节性好、连接灵活、无须焊接和易于埋优点,已广泛的建筑幕墙工程上使用,但槽型预埋件与其它预埋件一样,埋设时也容易偏移、倾斜和进入结构墙体内等故障。 4/5 首页上一页2345下一页尾页
五、出现偏离的预埋件的处理意见
1.平板预埋件位置偏离设计位置
出现预埋件偏离时,可以加大(或加长)预埋锚板方法补救。加长锚板后使用化螺栓固定 。
2.预埋件出现偏斜
出现偏斜时,可以变动转接件角度,以适应转接件埋设产生的偏斜,也可根据用新的锚板代替。
3.预埋锚板下面出现空洞
预埋件下面出现空洞时应该充填水泥沙浆填实。
埋件虽然占幕墙投资的比例不大,但作用至关重要,它是幕墙构件存在的根基,是与主体结构连接的桥梁,是工程安全的关键,它在整个幕墙工程环节中节点性很强,由于'缺少经验'、'设计滞后'、'审核不力'等各种原因,常常会出现幕墙招标滞后于主体施工招标的现象,以致于土建已经开工,幕墙设计还不明确,错过了预埋件与主体结构同步施工的关键节点,仓促委托土建按建筑设计的粗略幕墙分格预埋,又出现了埋件位置偏差过大,浪费严重的现象。有的主体已经封顶,幕墙施工才刚开始,不得不全部采用后置埋件,既成倍的增加工程造价,又出现了结构破坏、质量不稳等系列问题。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bidlcyffcom/#/source=bdzd