风电并网对电网的影响:x0d由于风速变化是随机的,因此风电场出力也是随机的,风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。x0dx0d在风电容量比较高的电网中,可能产生电能质量问题,例如电压波动和闪变、频率偏差,谐波问题等。更重要的是,需分析稳定性问题,系统静态稳定、动态稳定、暂态稳定、电压稳定等。当然,相同装机容量的风电场在不同接入点对电网的影响是不同的,在短路容量大的接入点对系统影响小,反之,影响大。 x0d定量分析风电场对电网运行的影响,要从稳态和动态两方面进行分析。x0d稳态分析,就是对含风电场的电力系统进行潮流计算。在稳态潮流分析中,风电场高压母线不能简单视为PQ节点或PUjiedian。x0d含风电场电力系统对平衡节点的有功、无功平衡能力提出更高要求,要分析含风电场电网在电网大、小运行方式下,是否满足系统的安全稳定运行的各种约束。x0d动态分析过程,一般采用仿真的方法,要考虑异步发动机、双馈异步发动机等不同发电机的模型以及风速、风机、桨距调节等环节,用仿真程序PSS/E、PSCAD、PSASP等进行分析,分析的关键是各种风力发电机模型的选用。x0d分析风电并网对电网影响,还需考虑风电场无功问题。风电场无功消耗包括:异步发动机消耗;风机出口出口升压变压器;风电场升压站主变压器消耗等,如有必要,可采用动态电压控制设备。x0d目前风电的容量可信度常用的有两种评价方法:一种是计算含风电系统的可靠性指标,在保证系统可靠性不变的前提下,风电能够替代的常规发电机组容量即为其容量可信度,这种方法适合于系统的规划阶段;一种方法是时间序列仿真,选择合适的时间段作为研究对象。
发电机励磁系统的几种故障处理
电力系统的安全性稳定性和可靠性的区别
电力系统的安全性,稳定性和可靠性的区别,随着可靠性理论和方法在制造领域的应用越来越广泛,电力系统的安全性,稳定性和可靠性的区别,关于安全性,稳定性和可靠性的相关内容。
电力系统的安全性,稳定性和可靠性的区别1安全性-是要求电力系统中的所有电气设备必须在不超过它们所允许的电压、电流和频率的条件下运行,不仅在正常运行情况下应该如此,而且在事故情况下也应该如此。因此电力系统的安全性表征电力系统短时间内在事故情况下维持持续供电的能力,属电力系统实时运行中要考虑的问题。
可靠性-是指电力系统向用户长时间不间断持续供电的概率指标,属电力系统规划设计的范畴。稳定性-是指电力系统经受扰动后能继续向负荷正常供电的状态,即具有承受扰动的能力,一般分为:功角稳定、频率稳定和电压稳定。灵活性-是指电网运行方式的灵活多变。从概念上看,安全性涵盖安全性,二者都属于可靠性内容。
电力系统的安全性
电力系统安全性一般指指电力系统突然发生扰动(例如突然短路或非计划失去电力系统元件)时不间断地向用户提供电力和电量的能力,也有指电力系统的整体性,即电力系统维持联合运行的能力一说。
电力系统安全性与稳定性、可靠性的区别与联系
稳定性:是指电力系统可以连续向负荷正常供电的状态,即,电力系统受到小、大干扰(分别对应于静态稳定性和暂态稳定性)经过振荡后回到稳定点或从一个稳定点过渡到另一个稳定点;稳定性和安全性都有针对小干扰、大干扰而言的意思,但可以这么理解,从某种角度而言,安全性指运行中的所有电气设备必须在不超过它们允许的电压、电流和频率的幅值和时间限幅内运行。保证电力系统稳定是电力系统安全运行的必要条件。
安全性是表征系统短时间内抗干扰的能力,属于运行范畴。
可靠性:长时间连续正常供电的概率,属于规划范畴。是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供电能力的度量。
广义的可靠性包括充裕度和安全性两方面。
充裕度(也称静态可靠性):指电力系统维持连续给用户总的电力需求和总电量的能力,同时考虑到元件的计划停运及合理的期望非计划停运。表征电网的稳态性能。
安全性是动态的可靠性。
可靠性是系统设计和运行的总体目标,为保证可靠性,系统绝大部分时间都必须是安全的,为保证安全性,系统必须是稳定的,同时必须对其他不能归类为稳定问题的偶然事件是安全的,如设备损坏、杆塔倒塌或者人为破坏等。
电力系统的`安全性,稳定性和可靠性的区别2什么是电力系统稳定?
一、电力系统稳定概述和分类
电力系统稳定分为三个电量的稳定:电压稳定、频率稳定、功角稳定。
功角的稳定又分为三种:静态稳定、暂态稳定和动态稳定。
其中,静态稳定是系统受到小扰动后系统的稳定性;暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;动态稳定是小扰动后或者是大扰动1-2周波后的,并且采取技术措施后的稳定性 。
上述三个稳定性概念,采用一个碗中放置一个球,用这个球在受到外部作用后是否回到原来的位置来比喻说明:
静态稳定
一个碗中放一个球,当这个球受到外部的一个小力量,它就偏离原来位置,如果这个碗高度很矮,矮的像一个盘子,这个球就有可能从碗中掉下来,我们就说这个系统静态稳定不足。事实上,电力系统的小扰动不断在发生,碗中的球也就在碗底不断的在滚动,碗的高度越高,这个系统的静态稳定极限就越大,系统也就越稳定。
暂态稳定
当碗中的球受到一个大的外部力量,这个球能否还在碗中就是系统的暂态稳定问题。提高系统暂态稳定的最主要措施就是快速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保越快,外力的作用时间就越短,这个球就不会一下子掉下来。而自动电压调节器此时作用相当于自动改变这个碗的坡度,当这个球上升时增加坡度,当下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。
动态稳定
如果这个碗和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压调节器原来所产生的负阻尼变为正阻尼,相当于增加碗和球的摩擦系数,使球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。
电力系统的安全性,稳定性和可靠性的区别3电力系统的稳定性主要包括哪些方面
给定运行条件下的电力系统,在受到扰动后,重新回复到运行平衡状态的能力。系统中的多数变量可维持在一定的范围,使整个系统能稳定运行。
根据性质的不同,电力系统稳定性可分为功角稳定、电压稳定和频率稳定三类。
在分析功角稳定时,还可进一步分为以下三类:静态稳定、暂态稳定和动态稳定。
1、电力系统静态稳定是指电力系统受到小干扰后,不发生非周期性的失步,自动恢复到起始运行状态的能力。
2、电力系统暂态稳定指的是电力系统受到大干扰后,各发电机保持同步运行并过渡到新的或恢复到原来稳定运行状态的能力,通常指第一或第二摆不失步。
3、电力系统动态稳定是指系统受到干扰后,不发生振幅不断增大的振荡而失步。
利用转子电压表通过测量发电机转子正、负极对地电压,两极对地电压均不为零,说明发电机转子没有发生一点接地故障。按保护装置的复归按钮,“转子回路一点接地”故障信号消失。 (2)故障分析: 分析保护装置中“转子回路一点接地”动作原理知道,保护装置根据转子电压判断转子接地故障。当励磁调节装置刚起励时,发出初励电源投入命令,转子电压升高,发电机电压上升,经过一段时间延迟后,励磁调节装置自动退出初励电源,由于励磁调节器机端电压初始参考值低于初励电源产生的机端电压,所以当初励电源退出后,转子电压会突然下降很多,进而转子电压反馈给保护,则保护装置认为是转子回路发生了短路致使转子电压突然下降了,所以保护报信号。将励磁调节器逆变灭磁后重新做试验,在励磁调节器起励前,手工增加励磁调节器电压参考值,保证大于初励电源产生的发电机端电压,重新起励升压后,发电机运行正常,保护装置没有发“转子回路一点接地”故障报警。 (3)故障处理: 本次事故说明保护装置的“转子回路一点接地”功能不够完善,其动作机理不够科学,容易误动,建议完善“转子回路一点接地”功能,或者更换为更为可靠的“转子回路一点接地”保护装置。 在“转子回路一点接地”保护功能未完善前,调整励磁调节装置起励初始参考值,要求电压初始参考值大于初励电源产生的发电机端电压。 2 正常调节有功功率引起机组解列的事故处理 (1)事故现象: 某电厂发电机组正常运行中,根据中调要求进行升负荷操作,在增加有功功率过程中,发电机输出无功功率由50MVar突然降低至-80MVar,励磁调节装置发出低励限制信号,发变组保护装置报失磁保护动作,发电机解列,灭磁开关跳闸。 (2)事故分析: 事故发生后,检查所有的保护及异常信号,发变组保护装置除了失磁保护动作外没有其它任何事故报警,故障录波显示事故障发生时,发电机机端电压下降,无功功率进相至80MVar,失磁保护正确动作; 励磁调节装置除了发出低励限制信号没有其它事故报警信号,从励磁调节装置录波分析显示,励磁调节装置中电力系统稳定器输出突降至下限幅值(5%额定机端电压),发电机无功急剧下降,进相运行后,励磁调节装置低励限制启动,但未来得及调节,发电机进相深度已满足失磁保护动作条件。 根据当时只有有功功率增加操作,发电机励磁调节器采用PSS-1A型电力系统稳定器,因此分析认为事故的发生是因为PSS反调引起的。对于PSS-1A型电力系统稳定器来说,PSS本身无法判断发电机有功功率的增加是系统低频振荡引起的还是由原动机调节引起的,当原动机增大有功功率输出,PSS输出会降低发电机励磁电流,进而降低发电机无功功率,这就是PSS-1A型的“反调”现象。PSS-1A根据有功功率的变化调节发电机励磁电流,当发电机有功功率向上变化时,其“反调”幅度与有功功率变化幅度成正比,由于本次增加发电机有功功率幅度较大,速度较快,PSS的“反调”直接导致励磁电流的突然降低造成深度进相,导致发电机失磁保护动作解列。 (3)事故处理: PSS-1A的“反调”现象对电厂和系统都是不利的,对于PSS-1A型电力系统稳定器可以在调节有功功率时增加闭锁PSS输出的功能,但目前电力系统不推荐这种方法;要消除这种“反调”现象最有效的方法就是采用PSS-2A或PSS-2B模型,目前国内外多家励磁调节器已具有该类模型电力系统稳定器,并在工程中得到大量使用。 对励磁调节器的低励限制功能进行完善,事故过程励磁调节器最先发出低励磁限制信号,但由于低励限制功能作用太慢,没有限制发电机无功功率降低才导致发电机失磁保护动作,目前业界中低励限制调节方法有两种:一种采用在低励限制时增加电压参考值的方法限制无功功率下降,这种方法调节过程较平稳,但调节速度较慢;另一种在低励限制动作时直接切换为无功功率闭环调节,根据无功功率下降的幅度及速度进行调节,这种方法调节速度快,有助于发电机无功功率快速恢复至正常运行范围。3 无功调差参数设置不一致切换导致发电机误强励事故分析 (1)事故现象: 某电厂200MW机组处于发电状态,有功200MW,无功+100Mvar。励磁调节器正常工作中,A通道为主通道,B通道为从通道,处于备用状态,励磁调试人员观察励磁电流,进行通道切换试验,通道切换命令(A通道至B通道)发出后,励磁电流突然增大,励磁变压器保护动作,作用于发电机解列跳闸。 (2) 事故分析: 事故发生后,检查B通道和励磁变压器保护装置,结果表明B通道和励磁变压器保护装置均工作正常,重新开机,B通道也能正常带负荷运行。但发现当发电机空载时,进行A通道和B通道切换,发电机定子电压无扰动;当发电机负载时,进行A通道和B通道切换,发电机定子电压有明显的偏移,遂将事故原因分析重点放在A通道和B通道参数差异上,比较发现:A通道无功调差系数为0,B通道无功调差系数误设置为-15%。 无功调差系数的定义为发电机无功功率为额定容量时,叠加在电压测量值的发电机定子电压的百分数。