256*4和128*8的内存有什么区别

核心提示DDR是一种继SDRAM后产生的内存技术,DDR,英文原意为“DoubleDataRate”,顾名思义,就是双数据传输模式。之所以称其为“双”,也就意味着有“单”,我们日常所使用的SDRAM都是“单数据传输模式”,这种内存的特性是在一个内存

DDR是一种继SDRAM后产生的内存技术,DDR,英文原意为“DoubleDataRate”,顾名思义,就是双数据传输模式。之所以称其为“双”,也就意味着有“单”,我们日常所使用的SDRAM都是“单数据传输模式”,这种内存的特性是在一个内存时钟周期中,在一个方波上升沿时进行一次操作(读或写),而DDR则引用了一种新的设计,其在一个内存时钟周期中,在方波上升沿时进行一次操作,在方波的下降沿时也做一次操作,之所以在一个时钟周期中,DDR则可以完成SDRAM两个周期才能完成的任务,所以理论上同速率的DDR内存与SDR内存相比,性能要超出一倍,可以简单理解为100MHZ DDR=200MHZ SDR。

DDR内存不向后兼容SDRAM

DDR内存采用184线结构,DDR内存不向后兼容SDRAM,要求专为DDR设计的主板与系统。

DDR-II内存将是现有DDR-I内存的换代产品,它们的工作时钟预计将为400MHz或更高(包括现代在内的多家内存商表示不会推出DDR-II 400的内存产品)。从JEDEC组织者阐述的DDR-II标准来看,针对PC等市场的DDR-II内存将拥有400-、533、667MHz等不同的时钟频率。

高端的DDR-II内存将拥有800-、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR-II内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。 DDR-II将采用和DDR-I内存一样的指令,但是新技术将使DDR-II内存拥有4到8路脉冲的宽度。DDR-II将融入CAS、OCD、ODT等新性能指标和中断指令。DDR-II标准还提供了4位、8位512MB内存1KB的寻址设置,以及16位512MB内存2KB的寻址设置。

DDR-II内存标准还包括了4位预取数(pre-fetch of 4 bits)性能,DDR-I技术的预取数位只有2位。

DDR3的市场导入时间预计为2006年下半,最高数据传输速度标准较达到1600Mbps。不过,就具体的设计来看,DDR3与DDR2的基础架构并没有本质的不同。从某种角度讲,DDR3是为了解决DDR2发展所面临的限制而催生的产物。

由于DDR2的数据传输频率发展到800MHz时,其内核工作频率已经达到200MHz,因此再向上提升较为困难,这就需要采用新的技术来保证速度的可持续发展性。另一方面,也是由于速度提高的缘故,内存的地址/命令与控制总线需要有全新的拓朴结构,而且业界也要求内存要具有更低的能耗,所以,DDR3要满足的需求就是:

更高的外部数据传输率

更先进的地址/命令与控制总线的拓朴架构

在保证性能的同时将能耗进一步降低

为了满足上述要求,DDR3在DDR2的基础上采用了以下新型设计:

8bit预取设计,DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz

采用点对点的拓朴架构,减轻地址/命令与控制总线的负担

采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。

下面我们通过DDR3与DDR2的对比,来更好的了解这一未来的DDR SDRAM家族的最新成员。

DDR3与DDR2的不同之处

1、逻辑Bank数量

DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。

2、封装(Packages)

DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。

3、突发长度(BL,Burst Length)

由于DDR3的预取为8bit,所以突发传输周期(BL,Burst Length)也固定为8,而对于DDR2和早期的DDR架构的系统,BL=4也是常用的,DDR3为此增加了一个4-bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。

3、寻址时序(Timing)

就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2至5之间,而DDR3则在5至11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0至4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。

4、新增功能——重置(Reset)

重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界已经很早以前就要求增这一功能,如今终于在DDR3身上实现。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有的操作,并切换至最少量活动的状态,以节约电力。在Reset期间,DDR3内存将关闭内在的大部分功能,所以有数据接收与发送器都将关闭。所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

5、新增功能——ZQ校准

ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(ODCE,On-Die Calibration Engine)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令之后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

6、参考电压分成两个

对于内存系统工作非常重要的参考电压信号VREF,在DDR3系统中将分为两个信号。一个是为命令与地址信号服务的VREFCA,另一个是为数据总线服务的VREFDQ,它将有效的提高系统数据总线的信噪等级。

7、根据温度自动自刷新(SRT,Self-Refresh Temperature)

为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。不过,为了最大的节省电力,DDR3采用了一种新型的自动自刷新设计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。

8、局部自刷新(RASR,Partial Array Self-Refresh)

这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似。

9、点对点连接(P2P,Point-to-Point)

这是为了提高系统性能而进行了重要改动,也是与DDR2系统的一个关键区别。在DDR3系统中,一个内存控制器将只与一个内存通道打交道,而且这个内存通道只能一个插槽。因此内存控制器与DDR3内存模组之间是点对点(P2P,Point-to-Point)的关系(单物理Bank的模组),或者是点对双点(P22P,Point-to-two-Point)的关系(双物理Bank的模组),从而大大减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。不过目前有关DDR3内存模组的标准制定工作刚开始,引脚设计还没有最终确定。

除了以上9点之外,DDR3还在功耗管理,多用途寄存器方面有新的设计,但由于仍入于讨论阶段,且并不是太重要的功能,在此就不详细介绍了。下面我们来总结一下DDR3与DDR2之间的对比:

DDR2与DDR3规格对比,业界认为DDR3-800将被限定于高端应用市场,这有点像当今DDR2-400的待遇,预计DDR3在台式机上将以1066MHz的速度起步

从整体的规格上看,DDR3在设计思路上与DDR2的差别并不大,提高传输速率的方法仍然是提高预取位数。但是,就像DDR2和DDR的对比一样,在相同的时钟频率下,DDR2与DDR3的数据带宽是一样的,只不过DDR3的速度提升潜力更大。所以初期我们不用对DDR3抱以多大的期望,就像当初我们对待DDR2一样。当然,在能耗控制方面,DDR3显然要出色得多,因此将可能率先受到移动设备的欢迎,就像最先欢迎DDR2内存的不是台式机,而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也将经历一个慢热的过程 .

DDR2与DDR的区别

与DDR相比,DDR2最主要的改进是在内存模块速度相同的情况下,可以提供相当于DDR内存两倍的带宽。这主要是通过在每个设备上高效率使用两个DRAM核心来实现的。作为对比,在每个设备上DDR内存只能够使用一个DRAM核心。技术上讲,DDR2内存上仍然只有一个DRAM核心,但是它可以并行存取,在每次存取中处理4个数据而不是两个数据。

DDR2与DDR的区别示意图

与双倍速运行的数据缓冲相结合,DDR2内存实现了在每个时钟周期处理多达4bit的数据,比传统DDR内存可以处理的2bit数据高了一倍。DDR2内存另一个改进之处在于,它采用FBGA封装方式替代了传统的TSOP方式。

然而,尽管DDR2内存采用的DRAM核心速度和DDR的一样,但是我们仍然要使用新主板才能搭配DDR2内存,因为DDR2的物理规格和DDR是不兼容的。首先是接口不一样,DDR2的针脚数量为240针,而DDR内存为184针;其次,DDR2内存的VDIMM电压为1.8V,也和DDR内存的2.5V不同。

DDR2的定义:

DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。

此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。

DDR2与DDR的区别:

在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。

1、延迟问题:

从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。

这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。

2、封装和发热量:

DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。

DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。

DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。

DDR2采用的新技术:

除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。

OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。

ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。

总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决

 
友情链接
鄂ICP备19019357号-22