什么是平均故障间隔时间?什么是故障前平均工作时间

核心提示平均故障间隔时间,是指产品或系统在两相邻故障间隔期内正确工作的平均时间,也称平均无故障工作时间。它是标志产品或系统能平均工作多长时间的量。一、 平均故障间隔时间平均无故障时间就是指在规定的条件下和规定的时间,产品的寿命单位总数与故障总数之比

平均故障间隔时间,是指产品或系统在两相邻故障间隔期内正确工作的平均时间,也称平均无故障工作时间。它是标志产品或系统能平均工作多长时间的量。

一、 平均故障间隔时间

平均无故障时间就是指在规定的条件下和规定的时间,产品的寿命单位总数与故障总数之比;或者说,平均无故障工作时间是可修复产品在相邻两次故障之间工作时间的数学期望值,即在每两次相邻故障之间的工作时间的平均值,它相当于产品的工作时间与这段时间内产品故障数之比。 事实上,“平均无故障工作时间”就是平均寿命,只不过这个平均寿命与公认的平均寿命是有区别的,它不表示产品的消亡和报废的平均时间,而只表示产品能正常工作的平均时间。

二、 故障前平均时间

平均故障间隔时间又称平均无故障时间,英文全称是“Mean Time Between Failure,是衡量一个产品(尤其是电器产品)的可靠性指标,单位为“小时”。

:不修复产品可靠性的一种基本参数,其度量方法为:在规定的条件下和规定的时间内,产品的寿命单位总数与故障总次数之比。

1、统计平均故障间隔时间的步骤

确定要分析的特定产品抽样总体。确定从抽样总体中采集故障数据的样本时间范围。 接收、诊断和修理产品样本期间结束时间和AFR计算时间之间必须有足够的时间间隔,以允许一定的时间来接收、诊断和修理报告为有故障的产品。 计算年故障率计算年故障率是用来说明某个特定产品在一个日历年度内的预期故障数。 将AFR转换为MTBF将AFR转换为MTBF(以小时计)。

2、平均无故障工作时间

是电子产品通常采用的可靠性指标,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。是衡量一个产品(尤其是电器产品)的可靠性指标。Mean Time Between Failure的英文缩写。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。

摘要:数控机床是一种装有程序控制系统的自动化机床,数控机床结构较为复杂,并且技术含量相当高,不同的数控机床,其用途、功能都会存在着不同之处。在机床装配和维修养护中,常常因重新安装零件或经过一定时间的运转,由于磨损、疲劳震动等原因,造成机床出现各类故障,需作重新调整。那么,你知道数控车床常见故障有哪些吗?数控机床维修方法是什么?数控机床维修数控车床常见故障有哪些数控机床维修方法

数控车床常见故障有哪些

一、按故障发生的部位分类

(1)主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。主机常见的故障主要有:

①因机械部件安装、调试、操作使用不当等原因引起的机械传动故障

②因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障

③因机械零件的损坏、联结不良等原因引起的故障,等等。

主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。数控机床的定期维护、保养。控制和根除“三漏”现象发生是减少主机部分故障的重要措施。

(2)电气控制系统故障从所使用的元器件类型上。根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类,

“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。数控机床的弱电部分包括CNC、PLC、MDI/CRT以及伺服驱动单元、输为输出单元等。

“弱电”故障又有硬件故障与软件故障之分。硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有。加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。

“强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。这部分的故障虽然维修、诊断较为方便,但由于它处于高压、大电流工作状态,发生故障的几率要高于“弱电”部分。必须引起维修人员的足够的重视。

二、按故障的性质分类

(1)确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便

确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常。但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。正确的使用与精心维护是杜绝或避免故障发生的重要措施。

(2)随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。

数控车床常见故障维修排除方法

1、数控机床故障诊断

在故障诊断时应掌握以下原则:

1.1先外部后内部

现代数控系统的可靠性越来越高,数控系统本身的故障率越来越低,而大部分故障的发生则是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能。系统外部的故障主要是由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。

1.2先机械后电气

一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大。在故障检修之前,首先注意排除机械性的故障。

1.3先静态后动态

先在机床断电的静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大、发生事故后,方可给机床通电。在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。

1.4先简单后复杂

当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

2、数控机床的故障诊断技术

数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。随着微处理器的不断发展,诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。目前所使用的各种CNC系统的诊断技术大致可分为以下几类:

2.1起动诊断

起动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。否则,将在CRT画面或发光二极管用报警方式指示故障信息。此时起动诊断过程不能结束,系统无法投入运行。

2.2在线诊断

在线诊断是指通过CNC系统的内装程序,在系统处于正常运行状态时对CNC系统本身及CNC装置相连的各个伺服单元、伺服电机、主轴伺服单元和主轴电动机以及外部设备等进行自动诊断、检查。只要系统不停电,在线诊断就不会停止。

在线诊断一般包括自诊断功能的状态显示有上千条,常以二进制的0、1来显示其状态。对正逻辑来说,0表示断开状态,1表示接通状态,借助状态显示可以判断出故障发生的部位。常用的有接口状态和内部状态显示,如利用I/O接口状态显示,再结合PLC梯形图和强电控制线路图,用推理法和排除法即可判断出故障点所在的真正位置。故障信息大都以报警号形式出现。一般可分为以下几大类:过热报警类;系统报警类;存储报警类;编程/设定类;伺服类;行程开关报警类;印刷线路板间的连接故障类。

2.3离线诊断

离线诊断是指数控机床数控系统出现故障后,数控系统制造厂家或专业维修中心利用专用的诊断软件和测试装置进行停机(或脱机)检查。力求把故障定位到尽可能小的范围内,如缩小到某个功能模块、某部分电路,甚至某个芯片或元件,这种故障定位更为精确。

2.4现代诊断技术

随着电信技术的发展,IC和微机性价比的提高,近年来国外已将一些新的概念和方法成功地引用到诊断领域。

(1)通信诊断

也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断。如西门子公司在CNC系统诊断中采用了这种诊断功能,用户把CNC系统中专用的“通信接口”连接在普通电话线上,而两门子公司维修中心的专用通迅诊断计算机的“数据电话”也连接到电话线路上,然后由计算机向CNC系统发送诊断程序,并将测试数据输回到计算机进行分析并得出结论,随后将诊断结论和处理办法通知用户。

通讯诊断系统还可为用户作定期的预防性诊断,维修人员不必亲临现场,只需按预定的时间对机床作一系列运行检查,在维修中心分析诊断数据,可发现存在的故障隐患,以便及早采取措施。当然,这类CNC系统必须具备远程诊断接口及联网功能。

(2)自修复系统

就是在系统内设置有备用模块,在CNC系统的软件中装有自修复程序,当该软件在运行时一旦发现某个模块有故障时,系统一方面将故障信息显示在CRT上,同时自动寻找是否有备用模块,如有备用模块,则系统能自动使故障脱机,而接通备用模块使系统能较快地进入正常工作状态。这种方案适用于无人管理的自动化工作场合。

需要注意的是:数控机床在实际使用中也有些故障既无报警,现象也不是很明显,对这种情况,处理起来就不那样简单了。另外有此设备出现故障后,不但无报警信息,而且缺乏有关维修所需的资料。对这类故障的诊断处理,必须根据具体情况仔细检查,从现象的微小之处进行分析,找出它的真正原因。要查清这类故障的原因,首先必须从各种表面现象中找山它的真实故障现象,再从确认的故障现象中找出发生的原因。全面地分析一个故障现象是决定判断是否正确的重要因素。在查找故障原因前,首先必须了解以下情况:故障是在正常工作中出现还是刚开机就出现的;山现的次数是第一次还是已多次发生;确认机床加工程序的正确性;是否有其他人

 
友情链接
鄂ICP备19019357号-22