不管是氙气还是LED都需要驱动器把12V升压至极高电压,并且保证灯具组发光的稳定性。在配有主动头灯的车型里驱动部分还会整合转向电机和控制系统。购买驱动电源需要注意,是否带IC控制芯片,你可以理解.其实驱动,就是让之可以运行。
汽车led前大灯都有驱动介绍
LED灯为何需要驱动LED灯是不能够直接使用常规的市电电网电压的,由于LED光源的特性,为了满足LED特殊的电压、电流要求,必须使用特别设计的电压转换设备,才能使得LED正常工作,所以LED灯具就有了区别于传统灯具的电源驱动方式。
恒流驱动电路输出的电流是恒定的,而输出的直流电压却随着负载阻值的大小不同在一定范围内变化,负载阻值小,输出电压就低,负载阻值越大,输出电压也就越高。恒流电路不怕负载短路,但严禁负载完全开路。
恒流驱动电路驱动LED是较为理想的,但相对而言价格较高。应注意所使用最大承受电流及电压值,它限制了LED的使用数量。
led驱动电源国内常用哪些设计方案
本书以LED光源及其驱动技术为主线,全面系统地介绍了LED的特性、LED驱动电路及其相关技术,并结合实例介绍了各种LED驱动电路的详细设计方法,加深读者对LED驱动电源设计过程的理解。
本书兼顾了不同读者的需要,由浅入深,层次清晰,通俗易懂,实用性强,可作为电气工程类专业本科生及研究生的入门教材,也可供从事LED驱动电源设计的工程技术人员参考。
、LED有哪些优点?
★高效节能 一千小时仅耗几度电(普通60W白炽灯十七小时耗1度电,普通10W节能灯一百小时耗1度电)
★超长寿命 半导体芯片发光,无灯丝,无玻璃泡,不怕震动,不易破碎,使用寿命可达五万小时(普通白炽灯使用寿命仅有一千小时,普通节能灯使用寿命也只有八千小时)
★ 光线健康 光线中不含紫外线和红外线,不产生辐射(普通灯光线中含有紫外线和红外线)
★ 绿色环保 不含汞和氙等有害元素,利于回收和利用,而且不会产生电磁干扰(普通灯管中含有汞和铅等元素,节能灯中的电子镇流器会产生电磁干扰)
★ 保护视力 直流驱动,无频闪(普通灯都是交流驱动,就必然产生频闪)
★ 光效率高,发热小:90%的电能转化为可见光(普通白炽灯80%的电能转化为热能,仅有20%电能转化为光能)
★ 安全系数高 所需电压、电流较小,发热较小,不产生安全隐患,可用于矿场等危险场所
★ 市场潜力大 低压、直流供电,电池、太阳能供电即可,可用于边远山区及野外照明等缺电、少电场所。
三、权威预测
半导体照明将在未来5-10年内取代现有传统光源。
“未来白光LED将更加便宜,市场总体容量将快速增长。”许志鹏乐观地指出,据美国能源部预测,2010年前后,美国将有55%的白炽灯和荧光灯被LED替代,可能形成一个500亿美元的大产业。而日本提出,LED将在今年大规模替代传统白炽灯。日、美、欧、韩等国均已正式启动LED照明战略计划。
美国能源部预测,到2010年前后,美国将有55%的白炽灯和荧光灯将被嵌在芯片上的发光体---半导体灯替代。日本计划到2008年用这种半导体灯替代50%的传统照明灯具。科学家测量发现,在同样亮度下,LED的电能消耗光二极管(简称LED)的发展已取得巨大进步:已从纯粹用作指示灯发展为光输出达100流明以上的大功率LED。不久之后,LED照明的成本将降至与传统冷阴极荧光灯(简称CCFL)类似的水平。这使得人们对LED的下述应用兴趣日浓:汽车照明灯、建筑物内外的LED光源、以及笔记本电脑或电视机LCD屏的背光。大功率LED技术的发展提高了设计阶段对散热的要求。就像所有其它半导体一样,LED不能过热,以免加速输出的减弱,或者导致最坏状况:完全失效。与白炽灯相比,虽然大功率LED具有更高效率,但是输入功率中相当大的一部分仍变成热能而非光能。因而,可靠的运作就需要良好的散热,并要求在设计阶段就考虑高温环境。设计LED驱动电路尺寸时,也必须考虑温度因素:必须选择其正向电流,以确保即使环境温度达到最高值,LED芯片也不会过热。随着温度的升高,就需要通过降低最高容许电流,即降低额定值,来实现降温。LED制造商把降额曲线纳入其产品规格中。有关此类曲线,参见图1。
图1 LED降频曲线
利用无温度依赖性的电源运行LED存在弊端:在高温区域内,LED则超出规格范围运行。此外,当处于低温区域时,照明源就由明显低于最大容许电流(参见图1红色曲线)的电流供电。如图1的绿色曲线所示,通过LED驱动电路中的正温度系数热敏电阻(简称PTC热敏电阻)来控制LED电流是一个重大改进。这至少可以带来下列好处:
*在室温下增加正向电流,从而增加光输出
*因为可以减少LED使用量,所以可以使用价格较低的驱动集成电路(简称IC)乃至一个不带温度管理的驱动电路来节约成本
*实现无需IC控制的驱动电路设计,此电路亦可使LED电流随温度改变
*能够使用较便宜减额值较高安全裕量较小的LED
*过热保护功能提高了可靠性
*带散热片的热机械设计更为简单
大多数LED用驱动电路形式具有一个共同点:即流经LED的正向电流是通过固定电阻进行设置(参见图2)。一般说来,流经LED ILED的电流取决于Rout,即ILED ~ 1/Rout。由于Rout不随温度而变,因此LED电流也不受温度影响。
将固定电阻换成随温度变化的电路,即可实现对LED电流的温度管理。下列图表阐明了如何使用PTC热敏电阻来改善标准电路。
示例1:有反馈回路的恒流源图2中电路1为常用的驱动电路。其恒流源包括一条反馈回路。当调节电阻两端的反馈电压达到因IC而异的VFB时,LED电流就不变了。LED电流因而被稳定在ILED=VFB/Rout。
图2 LED的传统驱动方式
图3所示为上一电路改良型:此电路借由PTC热敏电阻,生成随温度变化的LED电流。通过正确选择PTC热敏电阻、Rseries以及 RparallEL,此电路与专用驱动IC和LED组合相匹配。其中,LED电流可经由下列方程式计算得出:
图3所示电路阐明了LED电流(参见图3)的温度依赖性。与针对最高运行温度为60度的恒流源相比较,使用PTC热敏电阻后LED电流可在0度和40度之间提升达40%,并且LED亮度也能提高同等百分比。
图3 采用PTC热敏电阻的温度监测和电流降频
示例2:调节电阻与LED无串联的恒流源
图2所示电路2为另一常见的恒流源电路:电流通过连接驱动IC的电阻得以确定。然而在这种情况下,调节电阻并未与LED串联。Rset和 ILED之间的比率由IC规格明确。因此,运用20KΩ的串联电阻和TLE4241G型驱动IC,最终产生的LED电流为30mA。图4所示为标准电路改良型,其中也含有一个PTC热敏电阻,尽管此处采用WHPTC热敏电阻。在感测温度,元件电阻可达4.7KΩ,且容许误差值为±5℃(标准系列) 或±3℃(容许误差值精确系列)。
图4所示为随外界温度而变化的LED电流。固定电阻Rseries容许误差范围小,在低温时支配总电阻。只有在低于PTC热敏电阻的感测温度大约15 K时,由于PTC热敏电阻的阻值开始增加,电流才会开始下降。在感测温度(总电阻=Rseries+RPTC=19.5KΩ+4.7KΩ=24.2KΩ) 时的电流大约为23mA。PTC电阻在温度更高时急剧上升,迅速引发断路,从而避免因温度过高出现故障。
图4 无分流测量之温度记录
示例3:无IC简单驱动电路
如图2所示电路3,LED也可在无驱动IC的情况下工作。图示电路是通过车用电池驱动单一200mA LED。稳压器生成5 V的稳定电源电压Vstab,以避免电源电压出现波动。LED在Vstab处运作,电流则通过与LED串联的电阻元件Rout决定。在这类电路中,通过下一则等式可算出独立于温度的正向电流,在此等式中,VDiode是一个LED的正向电压:
另一做法是将WHPTC的径向引线式PTC热敏电阻以及两个固定电阻相组合后,替代上述固定电阻,如图所示。
由于LED电流的绝大部分流经PTC热敏电阻本身,因此需要选择一个较大的径向引线式元件。PTC将因为流经电阻本身的电流而导致发热,因此会一直减少电流,无论环境温度为何(如图5所示)。并联两个或更多片式PTC热敏电阻会将电流分流,但此方案仍存在局限性。
图5 无需IC的温度补偿驱动电路
电流值主要是通过适当选择两个固定电阻来设置的。这两个电阻也在改进电路方面也起到重要作用,因为它们将产生的LED正向电流的允差保持在较低水平。这在正常工作温度范围内尤其重要,因为此时PTC热敏电阻本身的阻值允差仍较高。第二个并联固定电阻也能确保PTC不会在极端高温情况下彻底关闭 LED,因此,电流不会降至低于下列等式计算的所得值:
这项性能在例如汽车电子这样的应用中极其重要,因为安全要求不允许照明灯彻底关闭。
背景资料:LED的温度依赖性
像所有半导体一样,LED的最高容许结点温度不能超过,以免导致过早老化或者完全失效。如果结点温度要保持在临界值以下,那么外界温度升高时,最高容许正向电流则必须下降。不过,如果运用散热器,在特定的外界温度时正向电流可以增加。LED的光输出随着芯片结点温度的升高而下降。上述情况主要发生在红色和**LED,白色LED则与温度关系较小。光照效率和正向电流保持同步增长,不过,安装在结层和环境之间的LED所具备的高热阻率可以降低乃至逆转这种作用,这是因为随着结点温度的上升,发射光会降低。
此外,当结点温度上升且LED正向电压与温度保持同步增长时,发射光的主波长会以+0.1 nm / K的典型速率增长。各种白光LED驱动电路特性评比 1996年,日亚化学的中村氏发现蓝光LED之后,白光LED就被视为照明光源最具发展潜力的组件,因此,有关白光LED性能的改善与商品化应用,立即成为各国研究的焦点。目前,白光LED已经分别应用于公共场所的步道灯、汽车照明、交通号志、可携式电子产品、液晶显示器等领域。由于白光LED还具备丰富的三原色色温与高发光效率的特性,一般认为非常适用于液晶显示器的背光照明光源,因此,各厂商陆续推出白光LED专用驱动电路与相关组件。鉴于此,本文就 LED专用驱动电路的特性与今后的发展动向进行简单阐述。 1 定电流驱动的理由
1.1 白光LED的光度以顺向电流规范
白光LED的顺向电压通常被规范成20mA时,最小为3.0V,最大为4.0V,也就是若单纯施加一定的顺向电压时,顺向电流会作大范围的变化。
图1是从A、B两家LED企业的产品中随机取三种白光LED样品进行顺向电压与顺向电流特性检测的结果。根据检测结果显示,若利用3.4V顺向电压驱动上述六种白光LED时,顺向电流会在10~44mA范围内大幅变动。表1为白光LED的电气与光学特性。
由于白光LED的光度与色度是以定电流方式量测的,所以,为获得预期的亮度与色度,通常是用定电流驱动。
表2 为光学坐标的等级(rank)(IF=25mA,Ta=250C)。
1.2 避免顺向电流超越容许电流值
为确保白光LED的可靠性,基本上就是需要设法避免顺向电流超过白光LED的绝对最大设计值(定格值)。
图2中,白光LED的定格最大顺向电流为30mA,随着周围温度的上升,容许顺向电流则持续衰减,如果周围温度为50℃,通常顺向电流就不能超过20mA。此外,利用定电压的驱动方式不易控制流入LED的电流值,因此就无法维持LED的可靠性。
2 白光LED的驱动方法
图3是驱动白光LED常用的四种电源电路;图4是上述六种随机取样白光LED稳定后的ReguLation精度特性。
图4的测试结果显示,ReguLator的负载特性出现在白光LED的VF角落上,即图中的交叉点就是各白光LED的稳定动作点。
2.1 使用电压ReguLator的驱动方式
图3(a)的电路分别使用可以控制LED电流的电压ReguLator与BaLLast电阻,这种电路的优点是电压ReguLator种类丰富,设计者可以选择的自由度较大,而且与电压ReguLator、LED的接点只有一点;缺点是BaLLast造成的电力损失会导致效率恶化。此外,LED的顺向电流也无法获得精密控制。
图4(a)中可以看出,随机取样六个白光LED的顺向电流,从14.2mA到18.4mA分布范围非常广,因此,A厂商LED的(平均值)顺向电流高达2.0mA。相比之下,图4(b)电路使用的ReguLator虽然有小型、低成本的优点,缺点是可能会无法满足性能与可靠性的要求,也就是说本电路的实用性相对较弱。
2.2 使用定电流输出的电压ReguLator驱动方式
图3(b)的电路虽然可以使流入LED的所有电流稳定化,不过为了匹配(Matching)各LED的电气特性,电路中特别设置了一组 BaLLast电阻。
图3(b)中的MAX1910属于定电流输出型的电压ReguLator,虽然本电路使用同厂商、同批号(Lot)的白光LED,获得了极佳的匹配性,不过,在使用不同厂商与批号的LED时,就会出现很大的特性差异分布。本电流Regu-Lator使用类似图3(a)的方式控制驱动电流,不过它却可以使BaLLast电阻的消费电力降低一半左右。
图4(b)的测试结果显示,流入六个随机取样白光LED的电流,从15.4mA到19.6mA,变化范围非常大。因此,A厂商与B厂商两者的 LED是以平均17.5mA的电流驱动。此电路的缺点是BaLLast电阻造成的电力损失有残留之虞,而且又无法获得LED电流的匹配性;不过整体而言,本电路兼具动作特性与简洁性,所以具有相当程度的使用价值。
2.3 使用输出型的MuLti PuLL电流Regu-Lator的驱动方式
图3(c)的电路可以使流入LED的电流各自稳定化,因此不需要使用BaLLast电阻,电流的精度与匹配性ReguLator则由各自的电流 ReguLator支配。
图3(c)中的MAX1570 IC可以使上述电流ReguLation达成2%标准的电流精度,与0.3%标准的电流匹配性等目标。
由MAX1570 IC构成的电流ReguLator为低Drop Out Type,因此它的动作效率非常高。图4(c)的测试结果显示,使用图3(c)的驱动电路时,流入六个随机取样白光LED稳定化的电流为17.5mA。
虽然ReguLator与LED之间需要四个连接端子,不过此电路不需要BaLLast电阻,所以可以有效抑制封装面积,因此非常适合应用在封装空间极为狭窄的小型液晶面板等领域。
2.4 使用升压型电流ReguLator驱动的方式图3(d)的电路是利用可以使电流稳定化的电感(Inductor),构成所谓的高效率Step Up Converter。本电路的最大特点是 Feed Back ThreshoLd电压,可以减少电流检测用电阻的电力损失。此外,LED采用串联方式连接,所以流入白光LED的电流即使是在各种要求下,都能够与LED完全取得匹配。有关电流的精度基本上取决于Regu-Lator的Feed Back ThreshoLd精度,因此不会受到LED顺向电压的影响。
由MAX1848与MAX1561 IC构成的电流ReguLator的效率(PLED/PIN)分别是:三个 LED+MAX1848,87%;六个LED+MAX-1561, 84%。
Step Up Converter的另一优点是Regu-Lator与LED之间需要两个连接端子,而且LED的使用数量不会受到Step Up Converter种类的影响,这意味着设计者会拥有更大的选择空间。因此,Step Up Converter广泛应用在各种尺寸的液晶面板;电路的缺点是电感外形高度、组件成本偏高,有EMI辐射干扰。