1、峰值功率可不是选择电源的依据
这里提到的电源的功率,指的是电源的额定输出功率。其实电源实际输出功率,和环境的温度有很大的关系。电源内部温度过低或过高都会影响电流输出的质量。在环境温度低于-5℃或高于50℃时,电源的输出功率将降低,通常只能达到常温的50-60%。很多场上的功率都是标的峰值功率,是一瞬间电源能够产生的最大功率,对于用户没有任何实际意义,因此大家在选择电源的同时要注意厂家是否续表了功率。
2、电源重量
当然,电脑城里面没有公平秤,几斤几两全凭手掂。优质电源通常手感沉重,劣质电源手感很轻。相同功率下。这里大家需要注意,采用被动式PFC的电源重量较重,采用主动式的PFC电源较轻,所以要先确定电源是主动式还是被动式,才能根据重量做出判断。市场上多见的400W以下的电源多采用被动式PFC设计。
3、变压器
优质电源变压器一般应该达到电源高度的2/3,而且直径较大,劣质电源的变压器通常高度较低,甚至达不到电源的一半高度,而且直径细小,这样变压器不能用于12厘米大风扇电源,所以没有充足电源知识的用户,应当尽可能购买12cm大尺寸风扇。
4、EMI滤波电路
优质电源都有两级EMI滤波电路,它的作用是净化电流。劣质电源一般为了节省成本,省掉第一级EMI滤波电路或是全部省去。
5、滤波电容
优质电源的额定电容通常是额定200W使用330微法,额定250W使用470微法,额定300W使用680微法。劣质电源则采用小容量滤波电容,有的甚至采用处理品电容,换上新的皮蒙蔽消费者。
6、扼流线圈:优质电源在低压输出端都有较大的扼流线圈,至少使用两个,且线圈绕线规则。劣质的扼流线圈体积小,绕线杂乱,且通常会被省去一个。
7、名牌
优质电源明确标示各组输出电压的最大电流和联合输出功率,并且印刷清晰,还应印有有明确的危险警示标志以及公司和产地信息。上面的鑫谷电源就是符合标准的典范。伪劣电源印刷粗糙,参数不全,并且习惯标峰值功率来混淆视听。
认证:优质电源铭牌上有CCC、FCC、CE等安全机构的认证标志,劣质电源铭牌上则没有这些认证或是打上假认证。这其实是入门级用户直观判断电源的最简便途径,因为国家机关毕竟不会造假。
1.输入电压VIN范围:12V电池电压的瞬变范围决定了电源转换IC的输入电压范围。
典型的汽车电池电压范围为9V至16V,发动机关闭时,汽车电池的标称电压为12V;发动机工作时,电池电压在14.4V左右。但是,不同条件下,瞬态电压也可能达到±100V。ISO7637-1行业标准定义了汽车电池的电压波动范围。图1和图2所示波形即为ISO7637标准给出的部分波形,图中显示了高压汽车电源转换器需要满足的临界条件。
除了ISO7637-1,还有一些针对燃气发动机定义的电池工作范围和环境。大多数新的规范是由不同的OEM厂商提出的,不一定遵循行业标准。但是,任何新标准都要求系统具有过压和欠压保护。
2.散热考虑:散热需要根据DC-DC转换器的最低效率进行设计。
空气流通较差甚至没有空气流通的应用场合,如果环境温度较高(>30°C),外壳存在热源(>1W),设备会迅速发热(>85°C)。例如,大多数音频放大器需要安装散热片,并需要提供良好的空气流通条件以耗散热量。另外,PCB材料和一定的覆铜区域有助于提高热传导效率,从而达到最佳的散热条件。如果不使用散热片,封装上的裸焊盘的散热能力不超过2W至3W(85°C),随着环境温度升高,散热能力会明显降低。
将电池电压转换成低压(例如:3.3V)输出时,线性稳压器将损耗75%的输入功率,效率极低。为了提供1W的输出功率,将会有3W的功率作为热量消耗掉。受环境温度和管壳/结热阻的限制,将会明显降低1W最大输出功率。对于大多数高压DC-DC转换器,输出电流在150mA至200mA范围时,LDO能够提供较高的性价比。
将电池电压转换成低压(例如:3.3V),功率达到3W时,需要选择高端开关型转换器,这种转换器可以提供30W以上的输出功率。这也正是汽车电源制造商通常选用开关电源方案,而排斥基于LDO的传统架构的原因。
大功率设计(>20W)对于热管理要求比较严格,需要采用同步整流架构。为了获得高于单个封装的散热能力,避免封装“发热”,可以考虑使用外部MOSFET驱动器。
3.静态工作电流(IQ)及关断电流(ISD):
随着汽车中电子控制单元(ECU)数量的快速增长,汽车电池输出的总电流也不断增长。即使当发动机关闭并且电池电量耗尽时,有些ECU单元仍然保持工作。为了保证静态工作电流IQ在可控范围内,大多数OEM厂商开始对每个ECU的IQ加以限制。例如欧盟提出的要求是:100?A/ECU。绝大多数欧盟汽车标准规定ECU的IQ典型值低于100?A。始终保持工作状态的器件,例如:CAN收发器、实时时钟和微控制器的电流损耗是ECUIQ的主要考虑因素,电源设计需要考虑最小IQ预算。
4.成本控制:OEM厂商对于成本和规格的折中是影响电源材料清单的重要因素。
对于大批量生产的产品,成本是设计中需要考虑的重要因素。PCB类型、散热能力、允许选择的封装及其它设计约束条件实际受限于特定项目的预算。例如,使用4层板FR4和单层板CM3,PCB的散热能力就会有很大差异。
项目预算还会导致另一制约条件,用户能够接受更高成本的ECU,但不会花费时间和金钱用于改造传统的电源设计。对于一些成本很高的新的开发平台,设计人员只是简单地对未经优化的传统电源设计进行一些简单修整。
5.位置/布局:在电源设计中PCB和元件布局会限制电源的整体性能。
结构设计、电路板布局、噪声灵敏度、多层板的互连问题以及其它布板限制都会制约高芯片集成电源的设计。而利用负载点电源产生所有必要的电源也会导致高成本,将众多元件集于单一芯片并不理想。电源设计人员需要根据具体的项目需求平衡整体的系统性能、机械限制和成本。
6.电磁辐射:
随时间变化的电场会产生电磁辐射,辐射强度取决于场的频率和幅度,一个工作电路所产生的电磁干扰会直接影响另一电路。例如,无线电频道的干扰可能导致安全气囊的误动作,为了避免这些负面影响,OEM厂商针对ECU单元制定了最大电磁辐射限制。
为保持电磁辐射(EMI)在受控范围内,DC-DC转换器的类型、拓扑结构、外围元件选择、电路板布局及屏蔽都非常重要。经过多年的积累,电源IC设计者研究出了各种限制EMI的技术。外部时钟同步、高于AM调制频段的工作频率、内置MOSFET、软开关技术、扩频技术等都是近年推出的EMI抑制方案。