实际电压源与电流源可以等效变换,其中理想电压源与理想电流源互换公式 Us=R?·Is,电压源串联内阻与电流源并联内阻相等 R?=R?。电压源和电流源对外负载(RL)等效 对内不等效。因为电压源开路时,内部不消耗功率;电流源开路时 内部并联电阻有电流,所以消耗功率。
电流源和电压源如何等效变换?
2、为了化简电路,引入了电压源、电流源的概念,有时候把电路中的电压源等效变换成电流源,电路就被简化成简单电路;
3、为了化简电路,引入了电压源、电流源的概念,有时候把电路中的电流源等效变换成电压源,电路就被简化成简单电路;
1)我们的实际电源都有内阻r、电动势E,它们串联,电源电流变化时电动势不变,端电压变化U=E-Ir;
2)有人就假设,有一种电源没有内阻r,只有电动势E,这样U=E,端电压等于电动势不变,我们把这种理想的电源就叫做电压源;
1)我们的实际电源都有内阻r、电动势E,它们串联,当外电路电阻R大小变化时,它的电流I变化,I=E/(R+r);
2)有人就假设,有一种电源内阻r无穷大,外电路电阻R相对于内阻r无穷小,这样外电路的电阻R变化时电流不变
I=E/(R+r)=E/r,我们就叫它恒流源;
6、这样我们有了两个理想电源:
1)一个内阻为零的电压源;
2)一个内阻无穷大的电流源;
1)我们的实际电源可看成一个电动势为E的电压源与内阻为r的串联电路;
2)我们的实际电源可看成一个电流I=E/r 的电流源与内阻为r的并联电路;
3)也就是说“电动势为E的电压源与内阻为r的串联电路”,等效于“一个电流I=E/r 的电流源与内阻为r的并联电路”8、在电路分析时对于电动势、电阻,我们有时侯需要用电流源的概念把“串联”化成“并联”,有时候需要用电压源的概念把“并联”化成“串联”,使电路得以简化;
电压源和电流源的等效变换:
①若干个含源支路作串联、并联、混联时,就其两端来说可以简化为一个电压源或一个电流源。
②与电压源相串联的电阻可看作为电压源的内阻,与电流源并联的电阻可看作为电流源的内阻。
③理想电压源和理想电流源不能互相等效。
两个电路等效必须使两个电路的对外电特性相同。两个电路内部的几何结构及参量都已发生变化,所以内部并不等效。
理想电压源特点:
无论负载电阻如何变化,输出电压即电源端电压总保持为给定的US或us(t)不变,电源中的电流由外电路决定,输出功率可以无穷大,其内阻为0。
实际电压源特点:由理想电压源串联一个电阻组成,RS称为电源的内阻或输出电阻,负载的电压U=US–IRS,当RS=0时,电压源模型就变成恒压源模型。
理想电流源特点:无论负载电阻如何变化,总保持给定的Is或is(t),电流源的端电压由外电路决定,输出功率可以无穷大,其内阻无穷大。
实际电流源的特点:由理想电流源并联一个电阻组成,负载的电流为I=IS–Uab/RS,当内阻RS=?时,电流源模型就变成恒流源模型。